{mach,examples}: move examples to github.com/hexops/mach-examples

Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
This commit is contained in:
Stephen Gutekanst 2022-10-16 12:20:30 -07:00
parent 1cbef1f7e1
commit 189997c279
77 changed files with 2 additions and 11016 deletions

View file

@ -1,453 +0,0 @@
//! TODO: Refactor the API, maybe use a handle that contains the lib and other things and controls init and deinit of ft.Lib and other things
const std = @import("std");
const ft = @import("freetype");
const zigimg = @import("zigimg");
const Atlas = @import("atlas.zig").Atlas;
const AtlasErr = @import("atlas.zig").Error;
const UVData = @import("atlas.zig").UVData;
const App = @import("main.zig").App;
const draw = @import("draw.zig");
const Vertex = draw.Vertex;
const Tessellator = @import("tessellator.zig").Tessellator;
// If true, show the filled triangles green, the concave beziers blue and the convex ones red
const debug_colors = false;
pub const ResizableLabel = @This();
const Vec2 = @Vector(2, f32);
const Vec4 = @Vector(4, f32);
const VertexList = std.ArrayList(Vertex);
// All the data that a single character needs to be rendered
// TODO: hori/vert advance, write file format
const CharVertices = struct {
filled_vertices: VertexList,
filled_vertices_indices: std.ArrayList(u16),
// Concave vertices belong to the filled_vertices list, so just index them
concave_vertices: std.ArrayList(u16),
// The point outside of the convex bezier, doesn't belong to the filled vertices,
// But the other two points do, so put those in the indices
convex_vertices: VertexList,
convex_vertices_indices: std.ArrayList(u16),
fn deinit(self: CharVertices) void {
self.filled_vertices.deinit();
self.filled_vertices_indices.deinit();
self.concave_vertices.deinit();
self.convex_vertices.deinit();
self.convex_vertices_indices.deinit();
}
};
face: ft.Face,
char_map: std.AutoHashMap(u21, CharVertices),
allocator: std.mem.Allocator,
tessellator: Tessellator,
white_texture: UVData,
// The data that the write function needs
// TODO: move twxture here, don't limit to just white_texture
const WriterContext = struct {
label: *ResizableLabel,
app: *App,
position: Vec4,
text_color: Vec4,
text_size: u32,
};
const WriterError = ft.Error || std.mem.Allocator.Error || AtlasErr;
const Writer = std.io.Writer(WriterContext, WriterError, write);
pub fn writer(label: *ResizableLabel, app: *App, position: Vec4, text_color: Vec4, text_size: u32) Writer {
return Writer{
.context = .{
.label = label,
.app = app,
.position = position,
.text_color = text_color,
.text_size = text_size,
},
};
}
pub fn init(self: *ResizableLabel, lib: ft.Library, font_path: []const u8, face_index: i32, allocator: std.mem.Allocator, white_texture: UVData) !void {
self.* = ResizableLabel{
.face = try lib.createFace(font_path, face_index),
.char_map = std.AutoHashMap(u21, CharVertices).init(allocator),
.allocator = allocator,
.tessellator = undefined,
.white_texture = white_texture,
};
self.tessellator.init(self.allocator);
}
pub fn deinit(label: *ResizableLabel) void {
label.face.deinit();
label.tessellator.deinit();
var iter = label.char_map.valueIterator();
while (iter.next()) |ptr| {
ptr.deinit();
}
label.char_map.deinit();
}
// TODO: handle offsets
// FIXME: many useless allocations for the arraylists
fn write(ctx: WriterContext, bytes: []const u8) WriterError!usize {
var offset = Vec4{ 0, 0, 0, 0 };
var c: usize = 0;
while (c < bytes.len) {
const len = std.unicode.utf8ByteSequenceLength(bytes[c]) catch unreachable;
const char = std.unicode.utf8Decode(bytes[c..(c + len)]) catch unreachable;
c += len;
switch (char) {
'\n' => {
offset[0] = 0;
offset[1] -= @intToFloat(f32, ctx.label.face.size().metrics().height >> 6);
std.debug.todo("New line not implemented yet");
},
' ' => {
std.debug.todo("Space character not implemented yet");
// const v = try ctx.label.char_map.getOrPut(char);
// if (!v.found_existing) {
// try ctx.label.face.setCharSize(ctx.label.size * 64, 0, 50, 0);
// try ctx.label.face.loadChar(char, .{ .render = true });
// const glyph = ctx.label.face.glyph;
// v.value_ptr.* = GlyphInfo{
// .uv_data = undefined,
// .metrics = glyph.metrics(),
// };
// }
// offset[0] += @intToFloat(f32, v.value_ptr.metrics.horiAdvance >> 6);
},
else => {
const v = try ctx.label.char_map.getOrPut(char);
if (!v.found_existing) {
try ctx.label.face.loadChar(char, .{ .no_scale = true, .no_bitmap = true });
const glyph = ctx.label.face.glyph();
// Use a big scale and then scale to the actual text size
const multiplier = 1024 << 6;
const matrix = ft.Matrix{
.xx = 1 * multiplier,
.xy = 0 * multiplier,
.yx = 0 * multiplier,
.yy = 1 * multiplier,
};
glyph.outline().?.transform(matrix);
v.value_ptr.* = CharVertices{
.filled_vertices = VertexList.init(ctx.label.allocator),
.filled_vertices_indices = std.ArrayList(u16).init(ctx.label.allocator),
.concave_vertices = std.ArrayList(u16).init(ctx.label.allocator),
.convex_vertices = VertexList.init(ctx.label.allocator),
.convex_vertices_indices = std.ArrayList(u16).init(ctx.label.allocator),
};
var outline_ctx = OutlineContext{
.outline_verts = std.ArrayList(std.ArrayList(Vec2)).init(ctx.label.allocator),
.inside_verts = std.ArrayList(Vec2).init(ctx.label.allocator),
.concave_vertices = std.ArrayList(Vec2).init(ctx.label.allocator),
.convex_vertices = std.ArrayList(Vec2).init(ctx.label.allocator),
};
defer outline_ctx.outline_verts.deinit();
defer {
for (outline_ctx.outline_verts.items) |*item| {
item.deinit();
}
}
defer outline_ctx.inside_verts.deinit();
defer outline_ctx.concave_vertices.deinit();
defer outline_ctx.convex_vertices.deinit();
const callbacks = ft.Outline.Funcs(*OutlineContext){
.move_to = moveToFunction,
.line_to = lineToFunction,
.conic_to = conicToFunction,
.cubic_to = cubicToFunction,
.shift = 0,
.delta = 0,
};
try ctx.label.face.glyph().outline().?.decompose(&outline_ctx, callbacks);
uniteOutsideAndInsideVertices(&outline_ctx);
// Tessellator.triangulatePolygons() doesn't seem to work, so just
// call triangulatePolygon() for each polygon, and put the results all
// in all_outlines and all_indices
var all_outlines = std.ArrayList(Vec2).init(ctx.label.allocator);
defer all_outlines.deinit();
var all_indices = std.ArrayList(u16).init(ctx.label.allocator);
defer all_indices.deinit();
var idx_offset: u16 = 0;
for (outline_ctx.outline_verts.items) |item| {
ctx.label.tessellator.triangulatePolygon(item.items);
defer ctx.label.tessellator.clearBuffers();
try all_outlines.appendSlice(ctx.label.tessellator.out_verts.items);
for (ctx.label.tessellator.out_idxes.items) |idx| {
try all_indices.append(idx + idx_offset);
}
idx_offset += @intCast(u16, ctx.label.tessellator.out_verts.items.len);
}
for (all_outlines.items) |item| {
// FIXME: The uv_data is wrong, should be pushed up by the lowest a character can be
const vertex_uv = item / @splat(2, @as(f32, 1024 << 6));
const vertex_pos = Vec4{ item[0], item[1], 0, 1 };
try v.value_ptr.filled_vertices.append(Vertex{ .pos = vertex_pos, .uv = vertex_uv });
}
try v.value_ptr.filled_vertices_indices.appendSlice(all_indices.items);
// FIXME: instead of finding the closest vertex and use its index maybe use indices directly in the moveTo,... functions
var i: usize = 0;
while (i < outline_ctx.concave_vertices.items.len) : (i += 1) {
for (all_outlines.items) |item, j| {
const dist = @reduce(.Add, (item - outline_ctx.concave_vertices.items[i]) * (item - outline_ctx.concave_vertices.items[i]));
if (dist < 0.1) {
try v.value_ptr.concave_vertices.append(@truncate(u16, j));
break;
}
}
}
i = 0;
while (i < outline_ctx.convex_vertices.items.len) : (i += 3) {
const vert = outline_ctx.convex_vertices.items[i];
const vertex_uv = vert / @splat(2, @as(f32, 1024 << 6));
const vertex_pos = Vec4{ vert[0], vert[1], 0, 1 };
try v.value_ptr.convex_vertices.append(Vertex{ .pos = vertex_pos, .uv = vertex_uv });
for (all_outlines.items) |item, j| {
const dist1 = @reduce(.Add, (item - outline_ctx.convex_vertices.items[i + 1]) * (item - outline_ctx.convex_vertices.items[i + 1]));
if (dist1 < 0.1) {
try v.value_ptr.convex_vertices_indices.append(@truncate(u16, j));
}
const dist2 = @reduce(.Add, (item - outline_ctx.convex_vertices.items[i + 2]) * (item - outline_ctx.convex_vertices.items[i + 2]));
if (dist2 < 0.1) {
try v.value_ptr.convex_vertices_indices.append(@truncate(u16, j));
}
}
}
ctx.label.tessellator.clearBuffers();
}
// Read the data and apply resizing of pos and uv
var filled_vertices_after_offset = try ctx.label.allocator.alloc(Vertex, v.value_ptr.filled_vertices.items.len);
defer ctx.label.allocator.free(filled_vertices_after_offset);
for (filled_vertices_after_offset) |*vert, i| {
vert.* = v.value_ptr.filled_vertices.items[i];
vert.pos *= Vec4{ @intToFloat(f32, ctx.text_size) / 1024, @intToFloat(f32, ctx.text_size) / 1024, 0, 1 };
vert.pos += ctx.position + offset;
vert.uv = vert.uv * ctx.label.white_texture.width_and_height + ctx.label.white_texture.bottom_left;
}
var actual_filled_vertices_to_use = try ctx.label.allocator.alloc(Vertex, v.value_ptr.filled_vertices_indices.items.len);
defer ctx.label.allocator.free(actual_filled_vertices_to_use);
for (actual_filled_vertices_to_use) |*vert, i| {
vert.* = filled_vertices_after_offset[v.value_ptr.filled_vertices_indices.items[i]];
}
try ctx.app.vertices.appendSlice(actual_filled_vertices_to_use);
if (debug_colors) {
try ctx.app.fragment_uniform_list.appendNTimes(.{ .blend_color = .{ 0, 1, 0, 1 } }, actual_filled_vertices_to_use.len / 3);
} else {
try ctx.app.fragment_uniform_list.appendNTimes(.{ .blend_color = ctx.text_color }, actual_filled_vertices_to_use.len / 3);
}
var convex_vertices_after_offset = try ctx.label.allocator.alloc(Vertex, v.value_ptr.convex_vertices.items.len + v.value_ptr.convex_vertices_indices.items.len);
defer ctx.label.allocator.free(convex_vertices_after_offset);
var j: u16 = 0;
var k: u16 = 0;
while (j < convex_vertices_after_offset.len) : (j += 3) {
convex_vertices_after_offset[j] = v.value_ptr.convex_vertices.items[j / 3];
convex_vertices_after_offset[j].pos *= Vec4{ @intToFloat(f32, ctx.text_size) / 1024, @intToFloat(f32, ctx.text_size) / 1024, 0, 1 };
convex_vertices_after_offset[j].pos += ctx.position + offset;
convex_vertices_after_offset[j].uv = convex_vertices_after_offset[j].uv * ctx.label.white_texture.width_and_height + ctx.label.white_texture.bottom_left;
convex_vertices_after_offset[j + 1] = filled_vertices_after_offset[v.value_ptr.convex_vertices_indices.items[k]];
convex_vertices_after_offset[j + 2] = filled_vertices_after_offset[v.value_ptr.convex_vertices_indices.items[k + 1]];
k += 2;
}
try ctx.app.vertices.appendSlice(convex_vertices_after_offset);
if (debug_colors) {
try ctx.app.fragment_uniform_list.appendNTimes(.{ .type = .convex, .blend_color = .{ 1, 0, 0, 1 } }, convex_vertices_after_offset.len / 3);
} else {
try ctx.app.fragment_uniform_list.appendNTimes(.{ .type = .convex, .blend_color = ctx.text_color }, convex_vertices_after_offset.len / 3);
}
var concave_vertices_after_offset = try ctx.label.allocator.alloc(Vertex, v.value_ptr.concave_vertices.items.len);
defer ctx.label.allocator.free(concave_vertices_after_offset);
for (concave_vertices_after_offset) |*vert, i| {
vert.* = filled_vertices_after_offset[v.value_ptr.concave_vertices.items[i]];
}
try ctx.app.vertices.appendSlice(concave_vertices_after_offset);
if (debug_colors) {
try ctx.app.fragment_uniform_list.appendNTimes(.{ .type = .concave, .blend_color = .{ 0, 0, 1, 1 } }, concave_vertices_after_offset.len / 3);
} else {
try ctx.app.fragment_uniform_list.appendNTimes(.{ .type = .concave, .blend_color = ctx.text_color }, concave_vertices_after_offset.len / 3);
}
ctx.app.update_vertex_buffer = true;
ctx.app.update_frag_uniform_buffer = true;
// offset[0] += @intToFloat(f32, v.value_ptr.metrics.horiAdvance >> 6);
},
}
}
return bytes.len;
}
// First move to initialize the outline, (first point),
// After many Q L or C, we will come back to the first point and then call M again if we need to hollow
// On the second M, we instead use an L to connect the first point to the start of the hollow path.
// We then follow like normal and at the end of the hollow path we use another L to close the path.
// This is basically how an o would be drawn, each ... character is a Vertex
// --------
// | |
// | |
// | |
// | ---- |
// - | | Consider the vertices here and below to be at the same height, they are coincident
// - | |
// | ---- |
// | |
// | |
// | |
// --------
const OutlineContext = struct {
// There may be more than one polygon (for example with 'i' we have the polygon of the base and another for the circle)
outline_verts: std.ArrayList(std.ArrayList(Vec2)),
// The internal outline, used for carving the shape (for example in a, we would first get the outline of the a, but if we stopped there, it woul
// be filled, so we need another outline for carving the filled polygon)
inside_verts: std.ArrayList(Vec2),
// For the concave and convex beziers
concave_vertices: std.ArrayList(Vec2),
convex_vertices: std.ArrayList(Vec2),
};
// If there are elements in inside_verts, unite them with the outline_verts, effectively carving the shape
fn uniteOutsideAndInsideVertices(ctx: *OutlineContext) void {
if (ctx.inside_verts.items.len != 0) {
// Check which point of outline is closer to the first of inside
var last_outline = &ctx.outline_verts.items[ctx.outline_verts.items.len - 1];
const closest_to_inside: usize = blk: {
const first_point_inside = ctx.inside_verts.items[0];
var min: f32 = std.math.f32_max;
var closest_index: usize = undefined;
for (last_outline.items) |item, i| {
const dist = @reduce(.Add, (item - first_point_inside) * (item - first_point_inside));
if (dist < min) {
min = dist;
closest_index = i;
}
}
break :blk closest_index;
};
ctx.inside_verts.append(last_outline.items[closest_to_inside]) catch unreachable;
last_outline.insertSlice(closest_to_inside + 1, ctx.inside_verts.items) catch unreachable;
ctx.inside_verts.clearRetainingCapacity();
}
}
// TODO: Return also allocation error
fn moveToFunction(ctx: *OutlineContext, _to: ft.Vector) ft.Error!void {
uniteOutsideAndInsideVertices(ctx);
const to = Vec2{ @intToFloat(f32, _to.x), @intToFloat(f32, _to.y) };
// To check wether a point is carving a polygon,
// Cast a ray to the right of the point and check
// when this ray intersects the edges of the polygons,
// if the number of intersections is odd -> inside,
// if it's even -> outside
var new_point_is_inside = false;
for (ctx.outline_verts.items) |polygon| {
var i: usize = 1;
while (i < polygon.items.len) : (i += 1) {
const v1 = polygon.items[i - 1];
const v2 = polygon.items[i];
const min_y = @minimum(v1[1], v2[1]);
const max_y = @maximum(v1[1], v2[1]);
const min_x = @minimum(v1[0], v2[0]);
// If the point is at the same y as another, it may be counted twice,
// That's why we add the last !=
if (to[1] >= min_y and to[1] <= max_y and to[0] >= min_x and to[1] != v2[1]) {
new_point_is_inside = !new_point_is_inside;
}
}
}
// If the point is inside, put it in the inside verts
if (new_point_is_inside) {
ctx.inside_verts.append(to) catch unreachable;
} else {
// Otherwise create a new polygon
var new_outline_list = std.ArrayList(Vec2).init(ctx.outline_verts.allocator);
new_outline_list.append(to) catch unreachable;
ctx.outline_verts.append(new_outline_list) catch unreachable;
}
}
fn lineToFunction(ctx: *OutlineContext, to: ft.Vector) ft.Error!void {
// std.log.info("L {} {}", .{ to.x, to.y });
// If inside_verts is not empty, we need to fill it
if (ctx.inside_verts.items.len != 0) {
ctx.inside_verts.append(.{ @intToFloat(f32, to.x), @intToFloat(f32, to.y) }) catch unreachable;
} else {
// Otherwise append the new point to the last polygon
ctx.outline_verts.items[ctx.outline_verts.items.len - 1].append(.{ @intToFloat(f32, to.x), @intToFloat(f32, to.y) }) catch unreachable;
}
}
fn conicToFunction(ctx: *OutlineContext, _control: ft.Vector, _to: ft.Vector) ft.Error!void {
// std.log.info("C {} {} {} {}", .{ control.x, control.y, to.x, to.y });
const control = Vec2{ @intToFloat(f32, _control.x), @intToFloat(f32, _control.y) };
const to = Vec2{ @intToFloat(f32, _to.x), @intToFloat(f32, _to.y) };
// Either the inside verts or the outine ones
var verts_to_write = if (ctx.inside_verts.items.len != 0) &ctx.inside_verts else &ctx.outline_verts.items[ctx.outline_verts.items.len - 1];
const previous_point = verts_to_write.items[verts_to_write.items.len - 1];
const vertices = [_]Vec2{ control, to, previous_point };
const vec1 = control - previous_point;
const vec2 = to - control;
// if ccw, it's concave, else it's convex
if ((vec1[0] * vec2[1] - vec1[1] * vec2[0]) > 0) {
ctx.concave_vertices.appendSlice(&vertices) catch unreachable;
verts_to_write.append(control) catch unreachable;
} else {
ctx.convex_vertices.appendSlice(&vertices) catch unreachable;
}
verts_to_write.append(to) catch unreachable;
}
// Doesn't seem to be used much
fn cubicToFunction(ctx: *OutlineContext, control_0: ft.Vector, control_1: ft.Vector, to: ft.Vector) ft.Error!void {
_ = ctx;
_ = control_0;
_ = control_1;
_ = to;
@panic("TODO: search how to approximate cubic bezier with quadratic ones");
}
pub fn print(label: *ResizableLabel, app: *App, comptime fmt: []const u8, args: anytype, position: Vec4, text_color: Vec4, text_size: u32) !void {
const w = writer(label, app, position, text_color, text_size);
try w.print(fmt, args);
}