ecs: pass an all_components parameter to everything

Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
This commit is contained in:
Stephen Gutekanst 2022-06-10 17:13:03 -07:00 committed by Stephen Gutekanst
parent 858c14bbae
commit 1f7ea529f4
3 changed files with 383 additions and 367 deletions

View file

@ -340,365 +340,370 @@ pub const void_archetype_hash = std.math.maxInt(u64);
/// row index, enabling entities to "move" from one archetype table to another seamlessly and
/// making lookup by entity ID a few cheap array indexing operations.
/// * ComponentStorage(T) is a column of data within a table for a single type of component `T`.
pub const Entities = struct {
allocator: Allocator,
pub fn Entities(all_components: anytype) type {
_ = all_components;
return struct {
allocator: Allocator,
/// TODO!
counter: EntityID = 0,
/// TODO!
counter: EntityID = 0,
/// A mapping of entity IDs (array indices) to where an entity's component values are actually
/// stored.
entities: std.AutoHashMapUnmanaged(EntityID, Pointer) = .{},
/// A mapping of entity IDs (array indices) to where an entity's component values are actually
/// stored.
entities: std.AutoHashMapUnmanaged(EntityID, Pointer) = .{},
/// A mapping of archetype hash to their storage.
///
/// Database equivalent: table name -> tables representing entities.
archetypes: std.AutoArrayHashMapUnmanaged(u64, ArchetypeStorage) = .{},
/// A mapping of archetype hash to their storage.
///
/// Database equivalent: table name -> tables representing entities.
archetypes: std.AutoArrayHashMapUnmanaged(u64, ArchetypeStorage) = .{},
/// Points to where an entity is stored, specifically in which archetype table and in which row
/// of that table. That is, the entity's component values are stored at:
///
/// ```
/// Entities.archetypes[ptr.archetype_index].rows[ptr.row_index]
/// ```
///
pub const Pointer = struct {
archetype_index: u16,
row_index: u32,
};
const Self = @This();
pub const Iterator = struct {
entities: *Entities,
components: []const []const u8,
archetype_index: usize = 0,
row_index: u32 = 0,
pub const Entry = struct {
entity: EntityID,
pub fn unlock(e: Entry) void {
_ = e;
}
/// Points to where an entity is stored, specifically in which archetype table and in which row
/// of that table. That is, the entity's component values are stored at:
///
/// ```
/// Entities.archetypes[ptr.archetype_index].rows[ptr.row_index]
/// ```
///
pub const Pointer = struct {
archetype_index: u16,
row_index: u32,
};
pub fn next(iter: *Iterator) ?Entry {
const entities = iter.entities;
pub const Iterator = struct {
entities: *Self,
components: []const []const u8,
archetype_index: usize = 0,
row_index: u32 = 0,
// If the archetype table we're looking at does not contain the components we're
// querying for, keep searching through tables until we find one that does.
var archetype = entities.archetypes.entries.get(iter.archetype_index).value;
while (!archetype.hasComponents(iter.components) or iter.row_index >= archetype.len) {
iter.archetype_index += 1;
iter.row_index = 0;
if (iter.archetype_index >= entities.archetypes.count()) {
return null;
pub const Entry = struct {
entity: EntityID,
pub fn unlock(e: Entry) void {
_ = e;
}
archetype = entities.archetypes.entries.get(iter.archetype_index).value;
}
const row_entity_id = archetype.get(iter.entities.allocator, iter.row_index, "id", EntityID).?;
iter.row_index += 1;
return Entry{ .entity = row_entity_id };
}
};
pub fn query(entities: *Entities, components: []const []const u8) Iterator {
return Iterator{
.entities = entities,
.components = components,
};
}
pub fn init(allocator: Allocator) !Entities {
var entities = Entities{ .allocator = allocator };
const columns = try allocator.alloc(Column, 1);
columns[0] = .{
.name = "id",
.typeId = typeId(EntityID),
.size = @sizeOf(EntityID),
.alignment = @alignOf(EntityID),
.offset = undefined,
};
try entities.archetypes.put(allocator, void_archetype_hash, ArchetypeStorage{
.allocator = allocator,
.len = 0,
.capacity = 0,
.columns = columns,
.block = undefined,
.hash = void_archetype_hash,
});
return entities;
}
pub fn deinit(entities: *Entities) void {
entities.entities.deinit(entities.allocator);
var iter = entities.archetypes.iterator();
while (iter.next()) |entry| {
entities.allocator.free(entry.value_ptr.block);
entry.value_ptr.deinit(entities.allocator);
}
entities.archetypes.deinit(entities.allocator);
}
/// Returns a new entity.
pub fn new(entities: *Entities) !EntityID {
const new_id = entities.counter;
entities.counter += 1;
var void_archetype = entities.archetypes.getPtr(void_archetype_hash).?;
const new_row = try void_archetype.append(entities.allocator, .{ .id = new_id });
const void_pointer = Pointer{
.archetype_index = 0, // void archetype is guaranteed to be first index
.row_index = new_row,
};
entities.entities.put(entities.allocator, new_id, void_pointer) catch |err| {
void_archetype.undoAppend();
return err;
};
return new_id;
}
/// Removes an entity.
pub fn remove(entities: *Entities, entity: EntityID) !void {
var archetype = entities.archetypeByID(entity);
const ptr = entities.entities.get(entity).?;
// A swap removal will be performed, update the entity stored in the last row of the
// archetype table to point to the row the entity we are removing is currently located.
if (archetype.len > 1) {
const last_row_entity_id = archetype.get(entities.allocator, archetype.len - 1, "id", EntityID).?;
try entities.entities.put(entities.allocator, last_row_entity_id, Pointer{
.archetype_index = ptr.archetype_index,
.row_index = ptr.row_index,
});
}
// Perform a swap removal to remove our entity from the archetype table.
archetype.remove(ptr.row_index);
_ = entities.entities.remove(entity);
}
/// Returns the archetype storage for the given entity.
pub inline fn archetypeByID(entities: *Entities, entity: EntityID) *ArchetypeStorage {
const ptr = entities.entities.get(entity).?;
return &entities.archetypes.values()[ptr.archetype_index];
}
/// Sets the named component to the specified value for the given entity,
/// moving the entity from it's current archetype table to the new archetype
/// table if required.
pub fn setComponent(entities: *Entities, entity: EntityID, comptime name: []const u8, component: anytype) !void {
var archetype = entities.archetypeByID(entity);
// Determine the old hash for the archetype.
const old_hash = archetype.hash;
// Determine the new hash for the archetype + new component
var have_already = archetype.hasComponent(name);
const new_hash = if (have_already) old_hash else old_hash ^ std.hash_map.hashString(name);
// Find the archetype storage for this entity. Could be a new archetype storage table (if a
// new component was added), or the same archetype storage table (if just updating the
// value of a component.)
var archetype_entry = try entities.archetypes.getOrPut(entities.allocator, new_hash);
if (!archetype_entry.found_existing) {
// getOrPut allocated, so the archetype we retrieved earlier may no longer be a valid
// pointer. Refresh it now:
archetype = entities.archetypeByID(entity);
const columns = entities.allocator.alloc(Column, archetype.columns.len + 1) catch |err| {
assert(entities.archetypes.swapRemove(new_hash));
return err;
};
mem.copy(Column, columns, archetype.columns);
columns[columns.len - 1] = .{
.name = name,
.typeId = typeId(@TypeOf(component)),
.size = @sizeOf(@TypeOf(component)),
.alignment = if (@sizeOf(@TypeOf(component)) == 0) 1 else @alignOf(@TypeOf(component)),
pub fn next(iter: *Iterator) ?Entry {
const entities = iter.entities;
// If the archetype table we're looking at does not contain the components we're
// querying for, keep searching through tables until we find one that does.
var archetype = entities.archetypes.entries.get(iter.archetype_index).value;
while (!archetype.hasComponents(iter.components) or iter.row_index >= archetype.len) {
iter.archetype_index += 1;
iter.row_index = 0;
if (iter.archetype_index >= entities.archetypes.count()) {
return null;
}
archetype = entities.archetypes.entries.get(iter.archetype_index).value;
}
const row_entity_id = archetype.get(iter.entities.allocator, iter.row_index, "id", EntityID).?;
iter.row_index += 1;
return Entry{ .entity = row_entity_id };
}
};
pub fn query(entities: *Self, components: []const []const u8) Iterator {
return Iterator{
.entities = entities,
.components = components,
};
}
pub fn init(allocator: Allocator) !Self {
var entities = Self{ .allocator = allocator };
const columns = try allocator.alloc(Column, 1);
columns[0] = .{
.name = "id",
.typeId = typeId(EntityID),
.size = @sizeOf(EntityID),
.alignment = @alignOf(EntityID),
.offset = undefined,
};
std.sort.sort(Column, columns, {}, by_alignment_name);
archetype_entry.value_ptr.* = ArchetypeStorage{
.allocator = entities.allocator,
try entities.archetypes.put(allocator, void_archetype_hash, ArchetypeStorage{
.allocator = allocator,
.len = 0,
.capacity = 0,
.columns = columns,
.block = undefined,
.hash = undefined,
};
.hash = void_archetype_hash,
});
const new_archetype = archetype_entry.value_ptr;
new_archetype.calculateHash();
return entities;
}
// Either new storage (if the entity moved between storage tables due to having a new
// component) or the prior storage (if the entity already had the component and it's value
// is merely being updated.)
var current_archetype_storage = archetype_entry.value_ptr;
pub fn deinit(entities: *Self) void {
entities.entities.deinit(entities.allocator);
if (new_hash == old_hash) {
// Update the value of the existing component of the entity.
var iter = entities.archetypes.iterator();
while (iter.next()) |entry| {
entities.allocator.free(entry.value_ptr.block);
entry.value_ptr.deinit(entities.allocator);
}
entities.archetypes.deinit(entities.allocator);
}
/// Returns a new entity.
pub fn new(entities: *Self) !EntityID {
const new_id = entities.counter;
entities.counter += 1;
var void_archetype = entities.archetypes.getPtr(void_archetype_hash).?;
const new_row = try void_archetype.append(entities.allocator, .{ .id = new_id });
const void_pointer = Pointer{
.archetype_index = 0, // void archetype is guaranteed to be first index
.row_index = new_row,
};
entities.entities.put(entities.allocator, new_id, void_pointer) catch |err| {
void_archetype.undoAppend();
return err;
};
return new_id;
}
/// Removes an entity.
pub fn remove(entities: *Self, entity: EntityID) !void {
var archetype = entities.archetypeByID(entity);
const ptr = entities.entities.get(entity).?;
current_archetype_storage.set(entities.allocator, ptr.row_index, name, component);
// A swap removal will be performed, update the entity stored in the last row of the
// archetype table to point to the row the entity we are removing is currently located.
if (archetype.len > 1) {
const last_row_entity_id = archetype.get(entities.allocator, archetype.len - 1, "id", EntityID).?;
try entities.entities.put(entities.allocator, last_row_entity_id, Pointer{
.archetype_index = ptr.archetype_index,
.row_index = ptr.row_index,
});
}
// Perform a swap removal to remove our entity from the archetype table.
archetype.remove(ptr.row_index);
_ = entities.entities.remove(entity);
}
/// Returns the archetype storage for the given entity.
pub inline fn archetypeByID(entities: *Self, entity: EntityID) *ArchetypeStorage {
const ptr = entities.entities.get(entity).?;
return &entities.archetypes.values()[ptr.archetype_index];
}
/// Sets the named component to the specified value for the given entity,
/// moving the entity from it's current archetype table to the new archetype
/// table if required.
pub fn setComponent(entities: *Self, entity: EntityID, comptime name: []const u8, component: anytype) !void {
var archetype = entities.archetypeByID(entity);
// Determine the old hash for the archetype.
const old_hash = archetype.hash;
// Determine the new hash for the archetype + new component
var have_already = archetype.hasComponent(name);
const new_hash = if (have_already) old_hash else old_hash ^ std.hash_map.hashString(name);
// Find the archetype storage for this entity. Could be a new archetype storage table (if a
// new component was added), or the same archetype storage table (if just updating the
// value of a component.)
var archetype_entry = try entities.archetypes.getOrPut(entities.allocator, new_hash);
if (!archetype_entry.found_existing) {
// getOrPut allocated, so the archetype we retrieved earlier may no longer be a valid
// pointer. Refresh it now:
archetype = entities.archetypeByID(entity);
const columns = entities.allocator.alloc(Column, archetype.columns.len + 1) catch |err| {
assert(entities.archetypes.swapRemove(new_hash));
return err;
};
mem.copy(Column, columns, archetype.columns);
columns[columns.len - 1] = .{
.name = name,
.typeId = typeId(@TypeOf(component)),
.size = @sizeOf(@TypeOf(component)),
.alignment = if (@sizeOf(@TypeOf(component)) == 0) 1 else @alignOf(@TypeOf(component)),
.offset = undefined,
};
std.sort.sort(Column, columns, {}, by_alignment_name);
archetype_entry.value_ptr.* = ArchetypeStorage{
.allocator = entities.allocator,
.len = 0,
.capacity = 0,
.columns = columns,
.block = undefined,
.hash = undefined,
};
const new_archetype = archetype_entry.value_ptr;
new_archetype.calculateHash();
}
// Either new storage (if the entity moved between storage tables due to having a new
// component) or the prior storage (if the entity already had the component and it's value
// is merely being updated.)
var current_archetype_storage = archetype_entry.value_ptr;
if (new_hash == old_hash) {
// Update the value of the existing component of the entity.
const ptr = entities.entities.get(entity).?;
current_archetype_storage.set(entities.allocator, ptr.row_index, name, component);
return;
}
// Copy to all component values for our entity from the old archetype storage (archetype)
// to the new one (current_archetype_storage).
const new_row = try current_archetype_storage.appendUndefined(entities.allocator);
const old_ptr = entities.entities.get(entity).?;
// Update the storage/columns for all of the existing components on the entity.
current_archetype_storage.set(entities.allocator, new_row, "id", entity);
for (archetype.columns) |column| {
if (std.mem.eql(u8, column.name, "id")) continue;
for (current_archetype_storage.columns) |corresponding| {
if (std.mem.eql(u8, column.name, corresponding.name)) {
const old_value_raw = archetype.getRaw(old_ptr.row_index, column.name);
current_archetype_storage.setRaw(new_row, corresponding, old_value_raw) catch |err| {
current_archetype_storage.undoAppend();
return err;
};
break;
}
}
}
// Update the storage/column for the new component.
current_archetype_storage.set(entities.allocator, new_row, name, component);
archetype.remove(old_ptr.row_index);
const swapped_entity_id = archetype.get(entities.allocator, old_ptr.row_index, "id", EntityID).?;
// TODO: try is wrong here and below?
// if we removed the last entry from archetype, then swapped_entity_id == entity
// so the second entities.put will clobber this one
try entities.entities.put(entities.allocator, swapped_entity_id, old_ptr);
try entities.entities.put(entities.allocator, entity, Pointer{
.archetype_index = @intCast(u16, archetype_entry.index),
.row_index = new_row,
});
return;
}
// Copy to all component values for our entity from the old archetype storage (archetype)
// to the new one (current_archetype_storage).
const new_row = try current_archetype_storage.appendUndefined(entities.allocator);
const old_ptr = entities.entities.get(entity).?;
/// gets the named component of the given type (which must be correct, otherwise undefined
/// behavior will occur). Returns null if the component does not exist on the entity.
pub fn getComponent(entities: *Self, entity: EntityID, name: []const u8, comptime Component: type) ?Component {
var archetype = entities.archetypeByID(entity);
// Update the storage/columns for all of the existing components on the entity.
current_archetype_storage.set(entities.allocator, new_row, "id", entity);
for (archetype.columns) |column| {
if (std.mem.eql(u8, column.name, "id")) continue;
for (current_archetype_storage.columns) |corresponding| {
if (std.mem.eql(u8, column.name, corresponding.name)) {
const old_value_raw = archetype.getRaw(old_ptr.row_index, column.name);
current_archetype_storage.setRaw(new_row, corresponding, old_value_raw) catch |err| {
current_archetype_storage.undoAppend();
return err;
};
break;
}
}
const ptr = entities.entities.get(entity).?;
return archetype.get(entities.allocator, ptr.row_index, name, Component);
}
// Update the storage/column for the new component.
current_archetype_storage.set(entities.allocator, new_row, name, component);
/// Removes the named component from the entity, or noop if it doesn't have such a component.
pub fn removeComponent(entities: *Self, entity: EntityID, name: []const u8) !void {
var archetype = entities.archetypeByID(entity);
if (!archetype.hasComponent(name)) return;
archetype.remove(old_ptr.row_index);
const swapped_entity_id = archetype.get(entities.allocator, old_ptr.row_index, "id", EntityID).?;
// TODO: try is wrong here and below?
// if we removed the last entry from archetype, then swapped_entity_id == entity
// so the second entities.put will clobber this one
try entities.entities.put(entities.allocator, swapped_entity_id, old_ptr);
// Determine the old hash for the archetype.
const old_hash = archetype.hash;
try entities.entities.put(entities.allocator, entity, Pointer{
.archetype_index = @intCast(u16, archetype_entry.index),
.row_index = new_row,
});
return;
}
/// gets the named component of the given type (which must be correct, otherwise undefined
/// behavior will occur). Returns null if the component does not exist on the entity.
pub fn getComponent(entities: *Entities, entity: EntityID, name: []const u8, comptime Component: type) ?Component {
var archetype = entities.archetypeByID(entity);
const ptr = entities.entities.get(entity).?;
return archetype.get(entities.allocator, ptr.row_index, name, Component);
}
/// Removes the named component from the entity, or noop if it doesn't have such a component.
pub fn removeComponent(entities: *Entities, entity: EntityID, name: []const u8) !void {
var archetype = entities.archetypeByID(entity);
if (!archetype.hasComponent(name)) return;
// Determine the old hash for the archetype.
const old_hash = archetype.hash;
// Determine the new hash for the archetype with the component removed
var new_hash: u64 = 0;
for (archetype.columns) |column| {
if (!std.mem.eql(u8, column.name, name)) new_hash ^= std.hash_map.hashString(column.name);
}
assert(new_hash != old_hash);
// Find the archetype storage this entity will move to. Note that although an entity with
// (A, B, C) components implies archetypes ((A), (A, B), (A, B, C)) exist there is no
// guarantee that archetype (A, C) exists - and so removing a component sometimes does
// require creating a new archetype table!
var archetype_entry = try entities.archetypes.getOrPut(entities.allocator, new_hash);
if (!archetype_entry.found_existing) {
// getOrPut allocated, so the archetype we retrieved earlier may no longer be a valid
// pointer. Refresh it now:
archetype = entities.archetypeByID(entity);
const columns = entities.allocator.alloc(Column, archetype.columns.len - 1) catch |err| {
assert(entities.archetypes.swapRemove(new_hash));
return err;
};
var i: usize = 0;
// Determine the new hash for the archetype with the component removed
var new_hash: u64 = 0;
for (archetype.columns) |column| {
if (std.mem.eql(u8, column.name, name)) continue;
columns[i] = column;
i += 1;
if (!std.mem.eql(u8, column.name, name)) new_hash ^= std.hash_map.hashString(column.name);
}
assert(new_hash != old_hash);
// Find the archetype storage this entity will move to. Note that although an entity with
// (A, B, C) components implies archetypes ((A), (A, B), (A, B, C)) exist there is no
// guarantee that archetype (A, C) exists - and so removing a component sometimes does
// require creating a new archetype table!
var archetype_entry = try entities.archetypes.getOrPut(entities.allocator, new_hash);
if (!archetype_entry.found_existing) {
// getOrPut allocated, so the archetype we retrieved earlier may no longer be a valid
// pointer. Refresh it now:
archetype = entities.archetypeByID(entity);
const columns = entities.allocator.alloc(Column, archetype.columns.len - 1) catch |err| {
assert(entities.archetypes.swapRemove(new_hash));
return err;
};
var i: usize = 0;
for (archetype.columns) |column| {
if (std.mem.eql(u8, column.name, name)) continue;
columns[i] = column;
i += 1;
}
archetype_entry.value_ptr.* = ArchetypeStorage{
.allocator = entities.allocator,
.len = 0,
.capacity = 0,
.columns = columns,
.block = undefined,
.hash = undefined,
};
const new_archetype = archetype_entry.value_ptr;
new_archetype.calculateHash();
}
archetype_entry.value_ptr.* = ArchetypeStorage{
.allocator = entities.allocator,
.len = 0,
.capacity = 0,
.columns = columns,
.block = undefined,
.hash = undefined,
};
var current_archetype_storage = archetype_entry.value_ptr;
const new_archetype = archetype_entry.value_ptr;
new_archetype.calculateHash();
}
// Copy to all component values for our entity from the old archetype storage (archetype)
// to the new one (current_archetype_storage).
const new_row = try current_archetype_storage.appendUndefined(entities.allocator);
const old_ptr = entities.entities.get(entity).?;
var current_archetype_storage = archetype_entry.value_ptr;
// Copy to all component values for our entity from the old archetype storage (archetype)
// to the new one (current_archetype_storage).
const new_row = try current_archetype_storage.appendUndefined(entities.allocator);
const old_ptr = entities.entities.get(entity).?;
// Update the storage/columns for all of the existing components on the entity that exist in
// the new archetype table (i.e. excluding the component to remove.)
current_archetype_storage.set(entities.allocator, new_row, "id", entity);
for (current_archetype_storage.columns) |column| {
if (std.mem.eql(u8, column.name, "id")) continue;
for (archetype.columns) |corresponding| {
if (std.mem.eql(u8, column.name, corresponding.name)) {
const old_value_raw = archetype.getRaw(old_ptr.row_index, column.name);
current_archetype_storage.setRaw(new_row, column, old_value_raw) catch |err| {
current_archetype_storage.undoAppend();
return err;
};
break;
// Update the storage/columns for all of the existing components on the entity that exist in
// the new archetype table (i.e. excluding the component to remove.)
current_archetype_storage.set(entities.allocator, new_row, "id", entity);
for (current_archetype_storage.columns) |column| {
if (std.mem.eql(u8, column.name, "id")) continue;
for (archetype.columns) |corresponding| {
if (std.mem.eql(u8, column.name, corresponding.name)) {
const old_value_raw = archetype.getRaw(old_ptr.row_index, column.name);
current_archetype_storage.setRaw(new_row, column, old_value_raw) catch |err| {
current_archetype_storage.undoAppend();
return err;
};
break;
}
}
}
archetype.remove(old_ptr.row_index);
const swapped_entity_id = archetype.get(entities.allocator, old_ptr.row_index, "id", EntityID).?;
// TODO: try is wrong here and below?
// if we removed the last entry from archetype, then swapped_entity_id == entity
// so the second entities.put will clobber this one
try entities.entities.put(entities.allocator, swapped_entity_id, old_ptr);
try entities.entities.put(entities.allocator, entity, Pointer{
.archetype_index = @intCast(u16, archetype_entry.index),
.row_index = new_row,
});
}
archetype.remove(old_ptr.row_index);
const swapped_entity_id = archetype.get(entities.allocator, old_ptr.row_index, "id", EntityID).?;
// TODO: try is wrong here and below?
// if we removed the last entry from archetype, then swapped_entity_id == entity
// so the second entities.put will clobber this one
try entities.entities.put(entities.allocator, swapped_entity_id, old_ptr);
// TODO: iteration over all entities
// TODO: iteration over all entities with components (U, V, ...)
// TODO: iteration over all entities with type T
// TODO: iteration over all entities with type T and components (U, V, ...)
try entities.entities.put(entities.allocator, entity, Pointer{
.archetype_index = @intCast(u16, archetype_entry.index),
.row_index = new_row,
});
}
// TODO: "indexes" - a few ideas we could express:
//
// * Graph relations index: e.g. parent-child entity relations for a DOM / UI / scene graph.
// * Spatial index: "give me all entities within 5 units distance from (x, y, z)"
// * Generic index: "give me all entities where arbitraryFunction(e) returns true"
//
// TODO: iteration over all entities
// TODO: iteration over all entities with components (U, V, ...)
// TODO: iteration over all entities with type T
// TODO: iteration over all entities with type T and components (U, V, ...)
// TODO: "indexes" - a few ideas we could express:
//
// * Graph relations index: e.g. parent-child entity relations for a DOM / UI / scene graph.
// * Spatial index: "give me all entities within 5 units distance from (x, y, z)"
// * Generic index: "give me all entities where arbitraryFunction(e) returns true"
//
// TODO: ability to remove archetype entirely, deleting all entities in it
// TODO: ability to remove archetypes with no entities (garbage collection)
};
// TODO: ability to remove archetype entirely, deleting all entities in it
// TODO: ability to remove archetypes with no entities (garbage collection)
};
}
test "entity ID size" {
try testing.expectEqual(8, @sizeOf(EntityID));
@ -707,9 +712,11 @@ test "entity ID size" {
test "example" {
const allocator = testing.allocator;
const all_components = .{};
//-------------------------------------------------------------------------
// Create a world.
var world = try Entities.init(allocator);
var world = try Entities(all_components).init(allocator);
defer world.deinit();
//-------------------------------------------------------------------------

View file

@ -46,9 +46,11 @@ test "inclusion" {
test "example" {
const allocator = testing.allocator;
const all_components = .{};
//-------------------------------------------------------------------------
// Create a world.
var world = try World.init(allocator);
var world = try World(all_components).init(allocator);
defer world.deinit();
const player1 = try world.entities.new();
@ -61,7 +63,7 @@ test "example" {
try world.entities.setComponent(player3, "physics", @as(u16, 1234));
const physics = (struct {
pub fn physics(adapter: *Adapter) void {
pub fn physics(adapter: *Adapter(all_components)) void {
var iter = adapter.query(&.{"physics"});
std.debug.print("\nphysics ran\n", .{});
while (iter.next()) |row| {
@ -73,7 +75,7 @@ test "example" {
try world.register("physics", physics);
const rendering = (struct {
pub fn rendering(adapter: *Adapter) void {
pub fn rendering(adapter: *Adapter(all_components)) void {
var iter = adapter.query(&.{"geometry"});
std.debug.print("\nrendering ran\n", .{});
while (iter.next()) |row| {

View file

@ -4,52 +4,59 @@ const Allocator = mem.Allocator;
const testing = std.testing;
const Entities = @import("entities.zig").Entities;
const Iterator = Entities.Iterator;
pub const Adapter = struct {
world: *World,
pub fn Adapter(all_components: anytype) type {
return struct {
world: *World(all_components),
pub fn query(adapter: *Adapter, components: []const []const u8) Iterator {
return adapter.world.entities.query(components);
}
};
const Self = @This();
pub const Iterator = Entities(all_components).Iterator;
pub const System = fn (adapter: *Adapter) void;
pub const World = struct {
allocator: Allocator,
systems: std.StringArrayHashMapUnmanaged(System) = .{},
entities: Entities,
pub fn init(allocator: Allocator) !World {
return World{
.allocator = allocator,
.entities = try Entities.init(allocator),
};
}
pub fn deinit(world: *World) void {
world.systems.deinit(world.allocator);
world.entities.deinit();
}
pub fn register(world: *World, name: []const u8, system: System) !void {
try world.systems.put(world.allocator, name, system);
}
pub fn unregister(world: *World, name: []const u8) void {
world.systems.orderedRemove(name);
}
pub fn tick(world: *World) void {
var i: usize = 0;
while (i < world.systems.count()) : (i += 1) {
const system = world.systems.entries.get(i).value;
var adapter = Adapter{
.world = world,
};
system(&adapter);
pub fn query(adapter: *Self, components: []const []const u8) Iterator {
return adapter.world.entities.query(components);
}
}
};
};
}
pub fn World(all_components: anytype) type {
return struct {
allocator: Allocator,
systems: std.StringArrayHashMapUnmanaged(System) = .{},
entities: Entities(all_components),
const Self = @This();
pub const System = fn (adapter: *Adapter(all_components)) void;
pub fn init(allocator: Allocator) !Self {
return Self{
.allocator = allocator,
.entities = try Entities(all_components).init(allocator),
};
}
pub fn deinit(world: *Self) void {
world.systems.deinit(world.allocator);
world.entities.deinit();
}
pub fn register(world: *Self, name: []const u8, system: System) !void {
try world.systems.put(world.allocator, name, system);
}
pub fn unregister(world: *Self, name: []const u8) void {
world.systems.orderedRemove(name);
}
pub fn tick(world: *Self) void {
var i: usize = 0;
while (i < world.systems.count()) : (i += 1) {
const system = world.systems.entries.get(i).value;
var adapter = Adapter(all_components){
.world = world,
};
system(&adapter);
}
}
};
}