module: rename events -> systems, remove 'event arguments'

Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
This commit is contained in:
Stephen Gutekanst 2024-05-08 13:18:39 -07:00 committed by Stephen Gutekanst
parent 83d436ffa4
commit 22ac26b57e
19 changed files with 287 additions and 320 deletions

View file

@ -13,7 +13,7 @@ pub const components = .{
.index = .{ .type = usize },
};
pub const events = .{
pub const systems = .{
.init = .{ .handler = init },
.deinit = .{ .handler = deinit },
.audio_tick = .{ .handler = audioTick },
@ -32,7 +32,7 @@ ms_render_ahead: f32 = 16,
allocator: std.mem.Allocator,
ctx: sysaudio.Context,
player: sysaudio.Player,
on_state_change: ?mach.AnyEvent = null,
on_state_change: ?mach.AnySystem = null,
output_mu: std.Thread.Mutex = .{},
output: SampleBuffer,
mixing_buffer: ?std.ArrayListUnmanaged(f32) = null,
@ -168,7 +168,7 @@ fn audioTick(entities: *mach.Entities.Mod, audio: *Mod) !void {
}
}
if (audio.state().on_state_change) |on_state_change_event| {
if (did_state_change) audio.sendAnyEvent(on_state_change_event);
if (did_state_change) audio.scheduleAny(on_state_change_event);
}
// Write our rendered samples to the fifo, expanding its size as needed and converting our f32
@ -201,7 +201,7 @@ fn writeFn(audio_opaque: ?*anyopaque, output: []u8) void {
const format_size = audio.state().player.format().size();
const render_num_samples = @divExact(output.len, format_size);
audio.state().render_num_samples = render_num_samples;
audio.send(.audio_tick, .{});
audio.schedule(.audio_tick);
// Read the prepared audio samples and directly @memcpy them to the output buffer.
audio.state().output_mu.lock();
@ -210,7 +210,7 @@ fn writeFn(audio_opaque: ?*anyopaque, output: []u8) void {
if (read_slice.len < output.len) {
// We do not have enough audio data prepared. Busy-wait until we do, otherwise the audio
// thread may become de-sync'd with the loop responsible for producing it.
audio.send(.audio_tick, .{});
audio.schedule(.audio_tick);
if (audio.state().debug) log.debug("resync, found {} samples but need {} (nano timestamp {})", .{ read_slice.len / format_size, output.len / format_size, std.time.nanoTimestamp() });
audio.state().output_mu.unlock();

View file

@ -10,7 +10,7 @@ pub const name = .mach_core;
pub const Mod = mach.Mod(@This());
pub const events = .{
pub const systems = .{
.start = .{ .handler = start, .description =
\\ Send this once your app is initialized and ready for .app.tick events.
},
@ -128,7 +128,7 @@ fn init(entities: *mach.Entities.Mod, core: *Mod) !void {
.main_window = main_window,
});
mach.core.mods.send(.app, .init, .{});
mach.core.mods.schedule(.app, .init);
}
fn update(entities: *mach.Entities.Mod) !void {
@ -153,12 +153,12 @@ fn presentFrame(core: *Mod) !void {
mach.core.swap_chain.present();
// Signal that mainThreadTick is done
core.send(.main_thread_tick_done, .{});
core.schedule(.main_thread_tick_done);
},
.exiting => {
// Exit opportunity is here, deinitialize now
core.state().run_state = .deinitializing;
mach.core.mods.send(.app, .deinit, .{});
mach.core.mods.schedule(.app, .deinit);
},
else => return,
}
@ -181,13 +181,13 @@ fn deinit(entities: *mach.Entities.Mod, core: *Mod) !void {
core.state().run_state = .exited;
// Signal that mainThreadTick is done
core.send(.main_thread_tick_done, .{});
core.schedule(.main_thread_tick_done);
}
fn mainThreadTick(core: *Mod) !void {
if (core.state().run_state != .running) return;
_ = try mach.core.update(null);
mach.core.mods.send(.app, .tick, .{});
mach.core.mods.schedule(.app, .tick);
}
fn exit(core: *Mod) void {

View file

@ -16,19 +16,19 @@ pub fn initModule() !void {
// Initialize the global set of Mach modules used in the program.
try mods.init(std.heap.c_allocator);
mods.send(.mach_core, .init, .{});
mods.schedule(.mach_core, .init);
}
/// Tick runs a single step of the main loop on the main OS thread.
///
/// Returns true if tick() should be called again, false if the application should exit.
pub fn tick() !bool {
mods.send(.mach_core, .main_thread_tick, .{});
mods.schedule(.mach_core, .main_thread_tick);
// Dispatch events until this .mach_core.main_thread_tick_done is sent
try mods.dispatch(&stack_space, .{ .until = .{
.module_name = mods.moduleNameToID(.mach_core),
.local_event = mods.localEventToID(.mach_core, .main_thread_tick_done),
.system = mods.systemToID(.mach_core, .main_thread_tick_done),
} });
return mods.mod.mach_core.state().run_state != .exited;

View file

@ -38,7 +38,7 @@ pub const components = .{
},
};
pub const events = .{
pub const systems = .{
.update = .{ .handler = update },
};

View file

@ -59,7 +59,7 @@ pub const components = .{
.built = .{ .type = BuiltPipeline, .description = "internal" },
};
pub const events = .{
pub const systems = .{
.init = .{ .handler = init },
.deinit = .{ .handler = deinit },
.update = .{ .handler = update },

View file

@ -50,7 +50,7 @@ pub const components = .{
.built = .{ .type = BuiltText, .description = "internal" },
};
pub const events = .{
pub const systems = .{
.update = .{ .handler = update },
};

View file

@ -60,7 +60,7 @@ pub const components = .{
.built = .{ .type = BuiltPipeline, .description = "internal" },
};
pub const events = .{
pub const systems = .{
.init = .{ .handler = fn () void },
.deinit = .{ .handler = deinit },
.update = .{ .handler = update },

View file

@ -36,8 +36,8 @@ pub const EntityID = @import("module/main.zig").EntityID; // TODO: rename to jus
pub const Archetype = @import("module/main.zig").Archetype;
pub const ModuleID = @import("module/main.zig").ModuleID;
pub const EventID = @import("module/main.zig").EventID;
pub const AnyEvent = @import("module/main.zig").AnyEvent;
pub const SystemID = @import("module/main.zig").SystemID;
pub const AnySystem = @import("module/main.zig").AnySystem;
pub const merge = @import("module/main.zig").merge;
pub const builtin_modules = @import("module/main.zig").builtin_modules;
pub const Entities = @import("module/main.zig").Entities;

View file

@ -8,8 +8,8 @@ pub const Archetype = @import("Archetype.zig");
pub const ModSet = @import("module.zig").ModSet;
pub const Modules = @import("module.zig").Modules;
pub const ModuleID = @import("module.zig").ModuleID;
pub const EventID = @import("module.zig").EventID;
pub const AnyEvent = @import("module.zig").AnyEvent;
pub const SystemID = @import("module.zig").SystemID;
pub const AnySystem = @import("module.zig").AnySystem;
pub const Merge = @import("module.zig").Merge;
pub const merge = @import("module.zig").merge;
@ -46,7 +46,7 @@ test "entities DB" {
pub const components = .{
.id = .{ .type = u32 },
};
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
};
@ -60,7 +60,7 @@ test "entities DB" {
pub const components = .{
.id = .{ .type = u16 },
};
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
};
@ -97,8 +97,10 @@ test "entities DB" {
try physics.set(player3, .id, 1003);
//-------------------------------------------------------------------------
// Send events to modules
world.mod.renderer.send(.tick, .{});
// Schedule systems to run
world.mod.renderer.schedule(.tick);
// Dispatch systems
var stack_space: [8 * 1024 * 1024]u8 = undefined;
try world.dispatch(&stack_space, .{});
}

View file

@ -1,64 +1,3 @@
//! Module system
//!
//! ## Events
//!
//! Every piece of logic in a Mach module runs in response to an event.
//!
//! Events are used to schedule the execution order of event handlers. What we call event handlers
//! are often called 'systems' in other game engines following ECS design patterns. Typically,
//! other engines require that you express a specific order you'd like systems to execute in via
//! e.g. a sorting integer.
//!
//! Mach's module system has only events and event handlers. In order to get system/event-handler B
//! to run after A, A simply needs to send an event that module B defines an event handler for.
//! These are simple functions, with some dependency injection.
//!
//! Event handlers are also a point-of-parallelism opportunity, i.e. depending on what event
//! handlers do within their function body (whether it be adding/removing entities/components,
//! sending events, or reading/writing module state), the event scheduler can determine which event
//! handlers may be eligible for parallel execution without data races or non-deterministic behavior.
//! Mach does not yet implement this today, but will in the future.
//!
//! Events are simply a name associated with a function, as well as some (simple data type) parameters
//! that function may expect. They are however **high-level** communication between modules, i.e.
//! scheduling the execution of functions which are generally expected to do a reasonable amount of
//! work, since events are a dynamic dispatch point and not e.g. inline function calls.
//!
//! Events are also the foundation for:
//!
//! * Graphical editor integration, e.g. event names and parameters could be enumerated via an
//! external process to your program, allowing a graphical editor to craft and send events with
//! payloads to your program over e.g. a socket.
//! * Debugging facilities - for example the entire program can be analyzed as a sequence of named
//! events being dispatched, showing you the execution of e.g. a frame. Or, events could be saved
//! to disk and replayed/inspected later.
//! * Networking between modules - events could be serialized and sent over the network.
//! * Loops executing at different frequencies - a 'loop' is simply events firing in a circular loop,
//! e.g. you could have multiple loops of events going at the same time, using an event as a
//! synchronization point:
//! * .render_begin -> wait for .physics_sync -> .game_tick -> .game_draw_frame -> .render_end -> .render_begin
//! * .physics_begin -> .poll_input -> .physics_calculate -> .physics_sync -> .physics_end -> .physics_begin
//!
//! ## Event arguments
//!
//! Event arguments should only be used to convey stateless information.
//!
//! Good use-cases for event arguments are typically ones where you would want a graphical editor
//! to be able to convey to your program that something should be done, for example:
//! * `.spawn_monsters` with an argument conveying the number of monsters to spawn.
//! * `.set_entity_position` with an argument conveying what to set an entity's position to
//!
//! On the other hand, bad use-cases for event arguments tend to be stateful:
//!
//! * Anything involving pointers (which may be completely prohibited in the future)
//! * `.render_players` with an argument conveying to render specific player entities, rather than
//! the event having no arguments and instead looking at which entities have a component/tag
//! indicating they should be rendered.
//!
//! These examples are bad because if these events' arguments were to be e.g. serialized and saved
//! to disk, and then replayed later in a future execution of the program, you may find that the
//! arguments no longer make sense in a replay of the program.
const builtin = @import("builtin");
const std = @import("std");
const testing = @import("../testing.zig");
@ -76,12 +15,12 @@ fn ModuleInterface(comptime M: type) type {
return M;
}
fn validateModule(comptime M: type, comptime events: bool) void {
fn validateModule(comptime M: type, comptime systems: bool) void {
if (@typeInfo(M) != .Struct) @compileError("mach: expected module struct, found: " ++ @typeName(M));
if (!@hasDecl(M, "name")) @compileError("mach: module must have `pub const name = .foobar;`: " ++ @typeName(M));
if (@typeInfo(@TypeOf(M.name)) != .EnumLiteral) @compileError("mach: module must have `pub const name = .foobar;`, found type:" ++ @typeName(M.name));
if (events) {
if (@hasDecl(M, "events")) validateEvents("mach: module ." ++ @tagName(M.name) ++ " events ", M.events);
if (systems) {
if (@hasDecl(M, "systems")) validateSystems("mach: module ." ++ @tagName(M.name) ++ " systems ", M.systems);
_ = ComponentTypesM(M);
}
}
@ -95,11 +34,11 @@ fn Serializable(comptime T: type) type {
// TODO: add runtime module support
pub const ModuleID = u32;
pub const EventID = u32;
pub const SystemID = u32;
pub const AnyEvent = struct {
pub const AnySystem = struct {
module_id: ModuleID,
event_id: EventID,
system_id: SystemID,
};
/// Type-returning variant of merge()
@ -180,23 +119,23 @@ pub fn Modules(comptime modules: anytype) type {
inline for (modules) |M| _ = ModuleInterface(M);
return struct {
pub const LocalEvent = LocalEventEnum(modules);
pub const System = SystemEnum(modules);
/// Enables looking up a component type by module name and component name.
/// e.g. @field(@field(ComponentTypesByName, "module_name"), "component_name")
pub const component_types_by_name = ComponentTypesByName(modules){};
const Event = struct {
const Dispatch = struct {
module_name: ModuleID,
event_name: EventID,
system_name: SystemID,
args_slice: []u8,
args_alignment: u32,
};
const EventQueue = std.fifo.LinearFifo(Event, .Dynamic);
const DispatchQueue = std.fifo.LinearFifo(Dispatch, .Dynamic);
events_mu: std.Thread.RwLock = .{},
args_queue: std.ArrayListUnmanaged(u8) = .{},
events: EventQueue,
dispatch_queue_mu: std.Thread.RwLock = .{},
dispatch_args_queue: std.ArrayListUnmanaged(u8) = .{},
dispatch_queue: DispatchQueue,
mod: ModsByName(modules),
// TODO: pass mods directly instead of ComponentTypesByName?
entities: Database(modules),
@ -222,14 +161,14 @@ pub fn Modules(comptime modules: anytype) type {
m.* = .{
.entities = entities,
// TODO(module): better default allocations
.args_queue = try std.ArrayListUnmanaged(u8).initCapacity(allocator, 8 * 1024 * 1024),
.events = EventQueue.init(allocator),
.dispatch_args_queue = try std.ArrayListUnmanaged(u8).initCapacity(allocator, 8 * 1024 * 1024),
.dispatch_queue = DispatchQueue.init(allocator),
.mod = undefined,
.debug_trace = debug_trace,
};
errdefer m.args_queue.deinit(allocator);
errdefer m.events.deinit();
try m.events.ensureTotalCapacity(1024); // TODO(module): better default allocations
errdefer m.dispatch_args_queue.deinit(allocator);
errdefer m.dispatch_queue.deinit();
try m.dispatch_queue.ensureTotalCapacity(1024); // TODO(module): better default allocations
// Default initialize m.mod
inline for (@typeInfo(@TypeOf(m.mod)).Struct.fields) |field| {
@ -243,73 +182,100 @@ pub fn Modules(comptime modules: anytype) type {
}
pub fn deinit(m: *@This(), allocator: std.mem.Allocator) void {
m.args_queue.deinit(allocator);
m.events.deinit();
m.dispatch_args_queue.deinit(allocator);
m.dispatch_queue.deinit();
m.entities.deinit();
}
/// Returns an args tuple representing the standard, uninjected, arguments which the given
/// local event handler requires.
fn LocalArgs(module_name: ModuleName(modules), event_name: LocalEvent) type {
/// system requires.
fn SystemArgs(module_name: ModuleName(modules), system_name: System) type {
inline for (modules) |M| {
_ = ModuleInterface(M); // Validate the module
if (M.name != module_name) continue;
return LocalArgsM(M, event_name);
return SystemArgsM(M, system_name);
}
}
/// Converts an event enum for a single module, to an event enum for all modules.
fn moduleToGlobalEvent(
/// Converts a system enum for a single module, to a system enum for all modules.
fn moduleToGlobalSystemName(
comptime M: type,
comptime EventEnumM: anytype,
comptime EventEnum: anytype,
comptime event_name: EventEnumM(M),
) EventEnum(modules) {
return comptime stringToEnum(EventEnum(modules), @tagName(event_name)).?;
comptime SysEnumM: anytype,
comptime SysEnum: anytype,
comptime system_name: SysEnumM(M),
) SysEnum(modules) {
return comptime stringToEnum(SysEnum(modules), @tagName(system_name)).?;
}
/// Send an event to a specific module
pub fn send(
/// Schedule the specified system to run later
pub fn schedule(
m: *@This(),
// TODO: is a variant of this function where module_name/event_name is not comptime known, but asserted to be a valid enum, useful?
// TODO: is a variant of this function where module_name/system_name is not comptime known, but asserted to be a valid enum, useful?
comptime module_name: ModuleName(modules),
// TODO(important): cleanup comptime
comptime event_name: LocalEventEnumM(@TypeOf(@field(m.mod, @tagName(module_name)).__state)),
args: LocalArgsM(@TypeOf(@field(m.mod, @tagName(module_name)).__state), event_name),
comptime system_name: SystemEnumM(@TypeOf(@field(m.mod, @tagName(module_name)).__state)),
) void {
m.scheduleWithArgs(module_name, system_name, .{});
}
/// Schedule the specified system to run later, passing some additional arguments.
///
/// Today, any arguments are allowed, but in the future these will be restricted to simple
/// data types
/// , non-pointers, and you will want to ensure they are not stateful in order for
/// your program to work with future debugging tools.
///
/// In general, scheduleWithArgs should really only be used for cross-language, cross-process,
/// or cross-network behavior. If you otherwise need to get data from one system to another
/// you should be using entities and components.
pub fn scheduleWithArgs(
m: *@This(),
// TODO: is a variant of this function where module_name/system_name is not comptime known, but asserted to be a valid enum, useful?
comptime module_name: ModuleName(modules),
// TODO(important): cleanup comptime
comptime system_name: SystemEnumM(@TypeOf(@field(m.mod, @tagName(module_name)).__state)),
args: SystemArgsM(@TypeOf(@field(m.mod, @tagName(module_name)).__state), system_name),
) void {
// TODO: comptime safety/debugging
const event_name_g: LocalEvent = comptime moduleToGlobalEvent(
const system_name_g: System = comptime moduleToGlobalSystemName(
// TODO(important): cleanup comptime
@TypeOf(@field(m.mod, @tagName(module_name)).__state),
LocalEventEnumM,
LocalEventEnum,
event_name,
SystemEnumM,
SystemEnum,
system_name,
);
m.sendInternal(@intFromEnum(module_name), @intFromEnum(event_name_g), args);
m.sendInternal(@intFromEnum(module_name), @intFromEnum(system_name_g), args);
}
/// Send an event to a specific module, using a dynamic (not known to the compiled program) module and event name.
pub fn sendDynamic(m: *@This(), module_name: ModuleID, event_name: EventID, args: anytype) void {
/// Schedule the specified system to run later, using fully dynamic parameters (i.e. to run
/// a system not known to the program at compile time.)
pub fn scheduleDynamic(m: *@This(), module_name: ModuleID, system_name: SystemID) void {
m.scheduleDynamicWithArgs(module_name, system_name, .{});
}
/// Schedule the specified system to run later, using fully dynamic parameters (i.e. to run
/// a system not known to the program at compile time.)
pub fn scheduleDynamicWithArgs(m: *@This(), module_name: ModuleID, system_name: SystemID, args: anytype) void {
// TODO: runtime safety/debugging
// TODO: check args do not have obviously wrong things, like comptime values
// TODO: if module_name and event_name are valid enums, can we type-check args at runtime?
m.sendInternal(module_name, event_name, args);
// TODO: if module_name and system_name are valid enums, can we type-check args at runtime?
m.sendInternal(module_name, system_name, args);
}
fn sendInternal(m: *@This(), module_name: ModuleID, event_name: EventID, args: anytype) void {
fn sendInternal(m: *@This(), module_name: ModuleID, system_name: SystemID, args: anytype) void {
// TODO: verify arguments are valid, e.g. not comptime types
_ = Serializable(@TypeOf(args));
// TODO: debugging
m.events_mu.lock();
defer m.events_mu.unlock();
m.dispatch_queue_mu.lock();
defer m.dispatch_queue_mu.unlock();
const args_bytes = std.mem.asBytes(&args);
m.args_queue.appendSliceAssumeCapacity(args_bytes);
m.events.writeItemAssumeCapacity(.{
m.dispatch_args_queue.appendSliceAssumeCapacity(args_bytes);
m.dispatch_queue.writeItemAssumeCapacity(.{
.module_name = module_name,
.event_name = event_name,
.args_slice = m.args_queue.items[m.args_queue.items.len - args_bytes.len .. m.args_queue.items.len],
.system_name = system_name,
.args_slice = m.dispatch_args_queue.items[m.dispatch_args_queue.items.len - args_bytes.len .. m.dispatch_args_queue.items.len],
.args_alignment = @alignOf(@TypeOf(args)),
});
}
@ -321,29 +287,29 @@ pub fn Modules(comptime modules: anytype) type {
}
// TODO: docs
pub fn localEventToID(
pub fn systemToID(
m: *@This(),
comptime module_name: ModuleName(modules),
// TODO(important): cleanup comptime
local_event: LocalEventEnumM(@TypeOf(@field(m.mod, @tagName(module_name)).__state)),
) EventID {
return @intFromEnum(local_event);
system: SystemEnumM(@TypeOf(@field(m.mod, @tagName(module_name)).__state)),
) SystemID {
return @intFromEnum(system);
}
pub const DispatchOptions = struct {
/// If specified, instructs that dispatching should occur until the specified local
/// event has been dispatched.
/// If specified, instructs that dispatching should occur until the specified system
/// has been dispatched.
///
/// If null, dispatching occurs until the event queue is completely empty.
/// If null, dispatching occurs until the system queue is completely empty.
until: ?struct {
module_name: ModuleID,
local_event: EventID,
system: SystemID,
} = null,
};
/// Dispatches pending events, invoking their event handlers.
/// Dispatches pending systems, invoking their handlers.
///
/// Stack space must be large enough to fit the uninjected arguments of any event handler
/// Stack space must be large enough to fit the uninjected arguments of any system handler
/// which may be invoked, e.g. 8MB. It may be heap-allocated.
pub fn dispatch(
m: *@This(),
@ -383,55 +349,55 @@ pub fn Modules(comptime modules: anytype) type {
// TODO: PGO
while (true) {
// Dequeue the next event
m.events_mu.lock();
var ev = m.events.readItem() orelse {
m.events_mu.unlock();
// Dequeue the next system
m.dispatch_queue_mu.lock();
var d = m.dispatch_queue.readItem() orelse {
m.dispatch_queue_mu.unlock();
return;
};
// Pop the arguments off the ev.args_slice stack, so we can release args_slice space.
// Otherwise when we release m.events_mu someone may add more events' arguments
// Pop the arguments off the d.args_slice stack, so we can release args_slice space.
// Otherwise when we release m.dispatch_queue_mu someone may add more system' arguments
// to the buffer which would make it tricky to find a good point-in-time to release
// argument buffer space.
const aligned_addr = std.mem.alignForward(usize, @intFromPtr(stack_space.ptr), ev.args_alignment);
const aligned_addr = std.mem.alignForward(usize, @intFromPtr(stack_space.ptr), d.args_alignment);
const align_offset = aligned_addr - @intFromPtr(stack_space.ptr);
@memcpy(stack_space[align_offset .. align_offset + ev.args_slice.len], ev.args_slice);
ev.args_slice = stack_space[align_offset .. align_offset + ev.args_slice.len];
@memcpy(stack_space[align_offset .. align_offset + d.args_slice.len], d.args_slice);
d.args_slice = stack_space[align_offset .. align_offset + d.args_slice.len];
m.args_queue.shrinkRetainingCapacity(m.args_queue.items.len - ev.args_slice.len);
m.events_mu.unlock();
m.dispatch_args_queue.shrinkRetainingCapacity(m.dispatch_args_queue.items.len - d.args_slice.len);
m.dispatch_queue_mu.unlock();
// Dispatch the local event
try m.callLocal(@enumFromInt(ev.module_name), @enumFromInt(ev.event_name), ev.args_slice, injectable);
// Dispatch the system
try m.callSystem(@enumFromInt(d.module_name), @enumFromInt(d.system_name), d.args_slice, injectable);
// If we only wanted to dispatch until this event, then return.
// If we only wanted to dispatch until this system, then return.
if (options.until) |until| {
if (until.module_name == ev.module_name and until.local_event == ev.event_name) return;
if (until.module_name == d.module_name and until.system == d.system_name) return;
}
}
}
/// Call local event handler with the specified name in the specified module
inline fn callLocal(m: *@This(), module_name: ModuleName(modules), event_name: LocalEvent, args: []u8, injectable: anytype) !void {
if (@typeInfo(@TypeOf(event_name)).Enum.fields.len == 0) return;
switch (event_name) {
/// Call system handler with the specified name in the specified module
inline fn callSystem(m: *@This(), module_name: ModuleName(modules), system_name: System, args: []u8, injectable: anytype) !void {
if (@typeInfo(@TypeOf(system_name)).Enum.fields.len == 0) return;
switch (system_name) {
inline else => |ev_name| {
switch (module_name) {
inline else => |mod_name| {
const M = @field(NamespacedModules(modules){}, @tagName(mod_name));
_ = ModuleInterface(M); // Validate the module
if (@hasDecl(M, "events")) inline for (@typeInfo(@TypeOf(M.events)).Struct.fields) |field| {
if (@hasDecl(M, "systems")) inline for (@typeInfo(@TypeOf(M.systems)).Struct.fields) |field| {
comptime if (!std.mem.eql(u8, @tagName(ev_name), field.name)) continue;
if (m.debug_trace) log.debug("trace: .{s}.{s}", .{
@tagName(M.name),
@tagName(ev_name),
});
const handler = @field(M.events, @tagName(ev_name)).handler;
if (@typeInfo(@TypeOf(handler)) == .Type) continue; // Pre-declaration of what args an event has, nothing to do.
if (@typeInfo(@TypeOf(handler)) != .Fn) @compileError(std.fmt.comptimePrint("mach: module .{s} declares local event .{s} = .{{ .handler = T }}, expected fn but found: {s}", .{
const handler = @field(M.systems, @tagName(ev_name)).handler;
if (@typeInfo(@TypeOf(handler)) == .Type) continue; // Pre-declaration of what args an system has, nothing to do.
if (@typeInfo(@TypeOf(handler)) != .Fn) @compileError(std.fmt.comptimePrint("mach: module .{s} declares system .{s} = .{{ .handler = T }}, expected fn but found: {s}", .{
@tagName(M.name),
@tagName(ev_name),
@typeName(@TypeOf(handler)),
@ -444,7 +410,7 @@ pub fn Modules(comptime modules: anytype) type {
}
}
/// Invokes an event handler with optionally injected arguments.
/// Invokes a system handler with optionally injected arguments.
inline fn callHandler(handler: anytype, args_data: []u8, injectable: anytype, comptime debug_name: anytype) !void {
const Handler = @TypeOf(handler);
const StdArgs = UninjectedArgsTuple(Handler);
@ -481,7 +447,7 @@ pub fn ModsByName(comptime modules: anytype) type {
});
}
// Note: Modules() causes analysis of event handlers' function signatures, whose parameters include
// Note: Modules() causes analysis of system handlers' function signatures, whose parameters include
// references to ModSet(modules).Mod(). As a result, the type returned here may never invoke Modules()
// or depend on its result. However, it can analyze the global set of modules on its own, since no
// module's type should embed the result of Modules().
@ -603,7 +569,7 @@ pub fn ModSet(comptime modules: anytype) type {
return &m.__state;
}
/// Returns a read-only version of the module's state. If an event handler is
/// Returns a read-only version of the module's state. If a system handler is
/// read-only (i.e. only ever reads state/components/entities), then its events can
/// be skipped during e.g. record-and-replay of events from disk.
///
@ -646,34 +612,38 @@ pub fn ModSet(comptime modules: anytype) type {
try m.__entities.removeComponent(entity, module_tag, component_name);
}
pub inline fn send(m: *@This(), comptime event_name: LocalEventEnumM(M), args: LocalArgsM(M, event_name)) void {
pub inline fn schedule(m: *@This(), comptime system_name: SystemEnumM(M)) void {
m.scheduleWithArgs(system_name, .{});
}
pub inline fn scheduleWithArgs(m: *@This(), comptime system_name: SystemEnumM(M), args: SystemArgsM(M, system_name)) void {
const ModulesT = Modules(modules);
const MByName = ModsByName(modules);
const mod_ptr: *MByName = @alignCast(@fieldParentPtr(MByName, @tagName(module_tag), m));
const mods = @fieldParentPtr(ModulesT, "mod", mod_ptr);
mods.send(module_tag, event_name, args);
mods.scheduleWithArgs(module_tag, system_name, args);
}
pub inline fn event(_: *@This(), comptime event_name: LocalEventEnumM(M)) AnyEvent {
pub inline fn system(_: *@This(), comptime system_name: SystemEnumM(M)) AnySystem {
const module_name_g: ModuleName(modules) = M.name;
const event_name_g: Modules(modules).LocalEvent = comptime Modules(modules).moduleToGlobalEvent(
const system_name_g: Modules(modules).System = comptime Modules(modules).moduleToGlobalSystemName(
M,
LocalEventEnumM,
LocalEventEnum,
event_name,
SystemEnumM,
SystemEnum,
system_name,
);
return .{
.module_id = @intFromEnum(module_name_g),
.event_id = @intFromEnum(event_name_g),
.system_id = @intFromEnum(system_name_g),
};
}
pub inline fn sendAnyEvent(m: *@This(), ev: AnyEvent) void {
pub inline fn scheduleAny(m: *@This(), sys: AnySystem) void {
const ModulesT = Modules(modules);
const MByName = ModsByName(modules);
const mod_ptr: *MByName = @alignCast(@fieldParentPtr(MByName, @tagName(module_tag), m));
const mods = @fieldParentPtr(ModulesT, "mod", mod_ptr);
mods.sendDynamic(ev.module_id, ev.event_id, .{});
mods.scheduleDynamic(sys.module_id, sys.system_id);
}
};
}
@ -752,30 +722,26 @@ pub fn stringToEnum(comptime T: type, str: []const u8) ?T {
}
// TODO: tests
fn LocalArgsM(comptime M: type, event_name: anytype) type {
return ArgsM(M, event_name, "events");
}
fn ArgsM(comptime M: type, event_name: anytype, comptime which: anytype) type {
fn SystemArgsM(comptime M: type, system_name: anytype) type {
_ = ModuleInterface(M); // Validate the module
const which = "systems";
if (!@hasDecl(M, which)) return @TypeOf(.{});
const m_events = @field(M, which); // M.events
inline for (@typeInfo(@TypeOf(m_events)).Struct.fields) |field| {
comptime if (!std.mem.eql(u8, field.name, @tagName(event_name))) continue;
if (!@hasField(@TypeOf(m_events), @tagName(event_name))) @compileError(std.fmt.comptimePrint("mach: module .{s} declares no {s} event .{s}", .{
inline for (@typeInfo(@TypeOf(M.systems)).Struct.fields) |field| {
comptime if (!std.mem.eql(u8, field.name, @tagName(system_name))) continue;
if (!@hasField(@TypeOf(M.systems), @tagName(system_name))) @compileError(std.fmt.comptimePrint("mach: module .{s} declares no {s} system .{s}", .{
@tagName(M.name),
which,
@tagName(event_name),
@tagName(system_name),
}));
const handler = @field(m_events, @tagName(event_name)).handler;
const handler = @field(M.systems, @tagName(system_name)).handler;
const Handler = switch (@typeInfo(@TypeOf(handler))) {
.Type => handler, // Pre-declaration of what args an event has
.Fn => blk: {
if (@typeInfo(@TypeOf(handler)) != .Fn) @compileError(std.fmt.comptimePrint("mach: module .{s} declares {s} event .{s} = .{{ .handler = T }}, expected fn but found: {s}", .{
if (@typeInfo(@TypeOf(handler)) != .Fn) @compileError(std.fmt.comptimePrint("mach: module .{s} declares {s} system .{s} = .{{ .handler = T }}, expected fn but found: {s}", .{
@tagName(M.name),
which,
@tagName(event_name),
@tagName(system_name),
@typeName(@TypeOf(handler)),
}));
break :blk @TypeOf(handler);
@ -784,16 +750,16 @@ fn ArgsM(comptime M: type, event_name: anytype, comptime which: anytype) type {
};
return UninjectedArgsTuple(Handler);
}
@compileError("mach: module ." ++ @tagName(M.name) ++ " has no " ++ which ++ " event handler for ." ++ @tagName(event_name));
@compileError("mach: module ." ++ @tagName(M.name) ++ " has no " ++ which ++ " system handler for ." ++ @tagName(system_name));
}
/// enum describing every possible comptime-known local event name
fn LocalEventEnum(comptime modules: anytype) type {
/// enum describing every possible comptime-known system name
fn SystemEnum(comptime modules: anytype) type {
var enum_fields: []const std.builtin.Type.EnumField = &[0]std.builtin.Type.EnumField{};
var i: u32 = 0;
for (modules) |M| {
_ = ModuleInterface(M); // Validate the module
if (@hasDecl(M, "events")) inline for (@typeInfo(@TypeOf(M.events)).Struct.fields) |field| {
if (@hasDecl(M, "systems")) inline for (@typeInfo(@TypeOf(M.systems)).Struct.fields) |field| {
const exists_already = blk: {
for (enum_fields) |existing| if (std.mem.eql(u8, existing.name, field.name)) break :blk true;
break :blk false;
@ -814,12 +780,12 @@ fn LocalEventEnum(comptime modules: anytype) type {
});
}
/// enum describing every possible comptime-known local event name
fn LocalEventEnumM(comptime M: anytype) type {
/// enum describing every possible comptime-known system name
fn SystemEnumM(comptime M: anytype) type {
var enum_fields: []const std.builtin.Type.EnumField = &[0]std.builtin.Type.EnumField{};
var i: u32 = 0;
_ = ModuleInterface(M); // Validate the module
if (@hasDecl(M, "events")) inline for (@typeInfo(@TypeOf(M.events)).Struct.fields) |field| {
if (@hasDecl(M, "systems")) inline for (@typeInfo(@TypeOf(M.systems)).Struct.fields) |field| {
const exists_already = blk: {
for (enum_fields) |existing| if (std.mem.eql(u8, existing.name, field.name)) break :blk true;
break :blk false;
@ -909,17 +875,17 @@ fn NamespacedModules(comptime modules: anytype) type {
}
// TODO: tests
fn validateEvents(comptime error_prefix: anytype, comptime events: anytype) void {
if (@typeInfo(@TypeOf(events)) != .Struct or @typeInfo(@TypeOf(events)).Struct.is_tuple) {
@compileError(error_prefix ++ "expected a struct .{}, found: " ++ @typeName(@TypeOf(events)));
fn validateSystems(comptime error_prefix: anytype, comptime systems: anytype) void {
if (@typeInfo(@TypeOf(systems)) != .Struct or @typeInfo(@TypeOf(systems)).Struct.is_tuple) {
@compileError(error_prefix ++ "expected a struct .{}, found: " ++ @typeName(@TypeOf(systems)));
}
inline for (@typeInfo(@TypeOf(events)).Struct.fields) |field| {
inline for (@typeInfo(@TypeOf(systems)).Struct.fields) |field| {
const Event = field.type;
if (@typeInfo(Event) != .Struct) @compileError(std.fmt.comptimePrint(
error_prefix ++ "expected .{s} = .{{}}, found type: {s}",
.{ field.name, @typeName(Event) },
));
const event = @field(events, field.name);
const event = @field(systems, field.name);
// Verify .handler field
if (!@hasField(Event, "handler")) @compileError(std.fmt.comptimePrint(
@ -1101,7 +1067,7 @@ test ModuleInterface {
.location = .{ .type = @Vector(3, f32), .description = "A location component" },
};
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
};
@ -1122,7 +1088,7 @@ test Modules {
.location = .{ .type = @Vector(3, f32), .description = "A location component" },
};
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
};
@ -1131,7 +1097,7 @@ test Modules {
const Renderer = ModuleInterface(struct {
pub const name = .engine_renderer;
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
};
@ -1155,10 +1121,10 @@ test Modules {
testing.refAllDeclsRecursive(Sprite2D);
}
test "event name" {
test "system name" {
const Physics = ModuleInterface(struct {
pub const name = .engine_physics;
pub const events = .{
pub const systems = .{
.foo = .{ .handler = foo },
.bar = .{ .handler = bar },
.baz = .{ .handler = baz },
@ -1173,7 +1139,7 @@ test "event name" {
const Renderer = ModuleInterface(struct {
pub const name = .engine_renderer;
pub const events = .{
pub const systems = .{
.foo_unused = .{ .handler = fn (f32, i32) void },
.bar_unused = .{ .handler = fn (i32, f32) void },
.tick = .{ .handler = tick },
@ -1188,7 +1154,7 @@ test "event name" {
const Sprite2D = ModuleInterface(struct {
pub const name = .engine_sprite2d;
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
.foobar = .{ .handler = fooBar },
};
@ -1204,7 +1170,7 @@ test "event name" {
Sprite2D,
}));
const locals = @typeInfo(Ms.LocalEvent).Enum;
const locals = @typeInfo(Ms.System).Enum;
try testing.expect(type, u3).eql(locals.tag_type);
try testing.expect(usize, 8).eql(locals.fields.len);
try testing.expect([]const u8, "foo").eql(locals.fields[0].name);
@ -1356,7 +1322,7 @@ test UninjectedArgsTuple {
TupleTester.assertTuple(.{f32}, UninjectedArgsTuple(fn (a: *Foo, b: *Bar, c: Foo, d: Bar, i: f32) void));
}
test "event name calling" {
test "system name calling" {
const global = struct {
var ticks: usize = 0;
var physics_updates: usize = 0;
@ -1365,7 +1331,7 @@ test "event name calling" {
};
const Physics = ModuleInterface(struct {
pub const name = .engine_physics;
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
.update = .{ .handler = update },
.calc = .{ .handler = calc },
@ -1385,7 +1351,7 @@ test "event name calling" {
});
const Renderer = ModuleInterface(struct {
pub const name = .engine_renderer;
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
.update = .{ .handler = update },
};
@ -1408,10 +1374,10 @@ test "event name calling" {
try modules.init(testing.allocator);
defer modules.deinit(testing.allocator);
// Check we can use .callLocal() with a runtime-known event and module name.
// Check we can use .callSystem() with a runtime-known system and module name.
const alloc = try testing.allocator.create(u3);
defer testing.allocator.destroy(alloc);
const LE = @TypeOf(modules).LocalEvent;
const LE = @TypeOf(modules).System;
const m_alloc = try testing.allocator.create(u3);
defer testing.allocator.destroy(m_alloc);
const M = ModuleName(modules2);
@ -1419,9 +1385,9 @@ test "event name calling" {
m_alloc.* = @intFromEnum(@as(M, .engine_renderer));
alloc.* = @intFromEnum(@as(LE, .update));
var module_name = @as(M, @enumFromInt(m_alloc.*));
var local_event_name = @as(LE, @enumFromInt(alloc.*));
try modules.callLocal(module_name, local_event_name, &.{}, .{});
try modules.callLocal(module_name, local_event_name, &.{}, .{});
var local_system_name = @as(LE, @enumFromInt(alloc.*));
try modules.callSystem(module_name, local_system_name, &.{}, .{});
try modules.callSystem(module_name, local_system_name, &.{}, .{});
try testing.expect(usize, 0).eql(global.ticks);
try testing.expect(usize, 0).eql(global.physics_updates);
try testing.expect(usize, 2).eql(global.renderer_updates);
@ -1429,15 +1395,15 @@ test "event name calling" {
m_alloc.* = @intFromEnum(@as(M, .engine_physics));
alloc.* = @intFromEnum(@as(LE, .update));
module_name = @as(M, @enumFromInt(m_alloc.*));
local_event_name = @as(LE, @enumFromInt(alloc.*));
try modules.callLocal(module_name, local_event_name, &.{}, .{});
local_system_name = @as(LE, @enumFromInt(alloc.*));
try modules.callSystem(module_name, local_system_name, &.{}, .{});
try testing.expect(usize, 1).eql(global.physics_updates);
m_alloc.* = @intFromEnum(@as(M, .engine_physics));
alloc.* = @intFromEnum(@as(LE, .calc));
module_name = @as(M, @enumFromInt(m_alloc.*));
local_event_name = @as(LE, @enumFromInt(alloc.*));
try modules.callLocal(module_name, local_event_name, &.{}, .{});
local_system_name = @as(LE, @enumFromInt(alloc.*));
try modules.callSystem(module_name, local_system_name, &.{}, .{});
try testing.expect(usize, 0).eql(global.ticks);
try testing.expect(usize, 1).eql(global.physics_calc);
try testing.expect(usize, 1).eql(global.physics_updates);
@ -1462,7 +1428,7 @@ test "dispatch" {
});
const Physics = ModuleInterface(struct {
pub const name = .engine_physics;
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
.update = .{ .handler = update },
.update_with_struct_arg = .{ .handler = updateWithStructArg },
@ -1492,7 +1458,7 @@ test "dispatch" {
});
const Renderer = ModuleInterface(struct {
pub const name = .engine_renderer;
pub const events = .{
pub const systems = .{
.tick = .{ .handler = tick },
.frame_done = .{ .handler = fn (i32) void },
.update = .{ .handler = update },
@ -1529,28 +1495,27 @@ test "dispatch" {
try modules.init(testing.allocator);
defer modules.deinit(testing.allocator);
const LE = @TypeOf(modules).LocalEvent;
const LE = @TypeOf(modules).System;
const M = ModuleName(modules2);
// Local events
// Systems
var stack_space: [8 * 1024 * 1024]u8 = undefined;
modules.send(.engine_renderer, .update, .{});
modules.schedule(.engine_renderer, .update);
try modules.dispatchInternal(&stack_space, .{}, .{&foo});
try testing.expect(usize, 1).eql(global.renderer_updates);
modules.send(.engine_physics, .update, .{});
modules.send(.engine_physics, .update_with_struct_arg, .{.{}});
modules.sendDynamic(
modules.schedule(.engine_physics, .update);
modules.scheduleWithArgs(.engine_physics, .update_with_struct_arg, .{.{}});
modules.scheduleDynamic(
@intFromEnum(@as(M, .engine_physics)),
@intFromEnum(@as(LE, .calc)),
.{},
);
try modules.dispatchInternal(&stack_space, .{}, .{&foo});
try testing.expect(usize, 2).eql(global.physics_updates);
try testing.expect(usize, 1).eql(global.physics_calc);
// Local events
modules.send(.engine_renderer, .basic_args, .{ @as(u32, 1), @as(u32, 2) }); // TODO: match arguments against fn ArgsTuple, for correctness and type inference
modules.send(.engine_renderer, .injected_args, .{ @as(u32, 1), @as(u32, 2) });
// Systems
modules.scheduleWithArgs(.engine_renderer, .basic_args, .{ @as(u32, 1), @as(u32, 2) }); // TODO: match arguments against fn ArgsTuple, for correctness and type inference
modules.scheduleWithArgs(.engine_renderer, .injected_args, .{ @as(u32, 1), @as(u32, 2) });
try modules.dispatchInternal(&stack_space, .{}, .{&foo});
try testing.expect(usize, 3).eql(global.basic_args_sum);
try testing.expect(usize, 3).eql(foo.injected_args_sum);