module: event handlers are defined ahead of time

Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
This commit is contained in:
Stephen Gutekanst 2024-03-24 17:31:12 -07:00 committed by Stephen Gutekanst
parent 0fc3bf6545
commit 3bfafe102d
12 changed files with 1099 additions and 967 deletions

View file

@ -40,39 +40,47 @@ test "inclusion" {
test "example" {
const allocator = testing.allocator;
comptime var Renderer = type;
comptime var Physics = type;
Physics = mach.Module(struct {
pointer: u8,
const root = struct {
pub const modules = .{ Renderer, Physics };
pub const name = .physics;
pub const components = struct {
pub const id = u32;
const Physics = struct {
pointer: u8,
pub const name = .physics;
pub const components = struct {
pub const id = u32;
};
pub const events = .{
.{ .global = .tick, .handler = tick },
};
fn tick(physics: *World(modules).Mod(Physics)) void {
_ = physics;
}
};
pub fn tick(physics: *World(.{ Renderer, Physics }).Mod(Physics)) void {
_ = physics;
}
});
const Renderer = struct {
pub const name = .renderer;
pub const components = struct {
pub const id = u16;
};
pub const events = .{
.{ .global = .tick, .handler = tick },
};
Renderer = mach.Module(struct {
pub const name = .renderer;
pub const components = struct {
pub const id = u16;
fn tick(
physics: *World(modules).Mod(Physics),
renderer: *World(modules).Mod(Renderer),
) void {
_ = renderer;
_ = physics;
}
};
pub fn tick(
physics: *World(.{ Renderer, Physics }).Mod(Physics),
renderer: *World(.{ Renderer, Physics }).Mod(Renderer),
) void {
_ = renderer;
_ = physics;
}
});
};
//-------------------------------------------------------------------------
// Create a world.
var world: World(.{ Renderer, Physics }) = undefined;
var world: World(root.modules) = undefined;
try world.init(allocator);
defer world.deinit();

View file

@ -6,6 +6,7 @@ const mach = @import("../main.zig");
const Entities = @import("entities.zig").Entities;
const EntityID = @import("entities.zig").EntityID;
const comp = @import("comptime.zig");
const Module = @import("../module.zig").Module;
pub fn World(comptime mods: anytype) type {
const StateT = NamespacedState(mods);
@ -21,8 +22,8 @@ pub fn World(comptime mods: anytype) type {
pub const IsInjectedArgument = void;
const WorldT = @This();
pub fn Mod(comptime Module: anytype) type {
const module_tag = Module.name;
pub fn Mod(comptime M: anytype) type {
const module_tag = M.name;
const State = @TypeOf(@field(@as(StateT, undefined), @tagName(module_tag)));
const components = @field(ns_components, @tagName(module_tag));
return struct {
@ -212,6 +213,8 @@ fn NamespacedComponents(comptime modules: anytype) type {
fn NamespacedState(comptime modules: anytype) type {
var fields: []const std.builtin.Type.StructField = &[0]std.builtin.Type.StructField{};
inline for (modules) |M| {
// TODO: can't verify module here because it would introduce a dependency loop
// _ = Module(M);
const state_fields = std.meta.fields(M);
const State = if (state_fields.len > 0) @Type(.{
.Struct = .{

View file

@ -11,84 +11,91 @@ const allocator = gpa.allocator();
pub const Engine = struct {
device: *gpu.Device,
queue: *gpu.Queue,
exit: bool,
should_exit: bool,
pass: *gpu.RenderPassEncoder,
encoder: *gpu.CommandEncoder,
pub const name = .engine;
pub const Mod = World.Mod(@This());
pub const exit = fn () void;
pub const local = struct {
pub fn init(world: *World) !void {
core.allocator = allocator;
try core.init(.{});
const state = &world.mod.engine.state;
state.device = core.device;
state.queue = core.device.getQueue();
state.exit = false;
state.encoder = state.device.createCommandEncoder(&gpu.CommandEncoder.Descriptor{
.label = "engine.state.encoder",
});
world.modules.send(.init, .{});
}
pub fn deinit(world: *World, engine: *Mod) void {
// TODO: this triggers a device loss error, which we should handle correctly
// engine.state.device.release();
engine.state.queue.release();
world.modules.send(.deinit, .{});
core.deinit();
world.deinit();
_ = gpa.deinit();
}
// Engine module's exit handler
pub fn exit(world: *World) void {
world.modules.send(.exit, .{});
world.mod.engine.state.exit = true;
}
pub fn beginPass(engine: *Mod, clear_color: gpu.Color) void {
const back_buffer_view = core.swap_chain.getCurrentTextureView().?;
defer back_buffer_view.release();
// TODO: expose options
const color_attachment = gpu.RenderPassColorAttachment{
.view = back_buffer_view,
.clear_value = clear_color,
.load_op = .clear,
.store_op = .store,
};
const pass_info = gpu.RenderPassDescriptor.init(.{
.color_attachments = &.{color_attachment},
});
engine.state.pass = engine.state.encoder.beginRenderPass(&pass_info);
}
pub fn endPass(engine: *Mod) void {
// End this pass
engine.state.pass.end();
engine.state.pass.release();
var command = engine.state.encoder.finish(null);
defer command.release();
engine.state.encoder.release();
engine.state.queue.submit(&[_]*gpu.CommandBuffer{command});
// Prepare for next pass
engine.state.encoder = engine.state.device.createCommandEncoder(&gpu.CommandEncoder.Descriptor{
.label = "engine.state.encoder",
});
}
pub fn present() void {
core.swap_chain.present();
}
pub const events = .{
.{ .local = .init, .handler = init },
.{ .local = .deinit, .handler = deinit },
.{ .local = .exit, .handler = exit },
.{ .local = .beginPass, .handler = beginPass },
.{ .local = .endPass, .handler = endPass },
.{ .local = .present, .handler = present },
.{ .global = .tick, .handler = fn () void },
.{ .global = .exit, .handler = fn () void },
};
fn init(world: *World) !void {
core.allocator = allocator;
try core.init(.{});
const state = &world.mod.engine.state;
state.device = core.device;
state.queue = core.device.getQueue();
state.should_exit = false;
state.encoder = state.device.createCommandEncoder(&gpu.CommandEncoder.Descriptor{
.label = "engine.state.encoder",
});
world.modules.send(.init, .{});
}
fn deinit(world: *World, engine: *Mod) void {
// TODO: this triggers a device loss error, which we should handle correctly
// engine.state.device.release();
engine.state.queue.release();
world.modules.send(.deinit, .{});
core.deinit();
world.deinit();
_ = gpa.deinit();
}
// Engine module's exit handler
fn exit(world: *World) void {
world.modules.send(.exit, .{});
world.mod.engine.state.should_exit = true;
}
fn beginPass(engine: *Mod, clear_color: gpu.Color) void {
const back_buffer_view = core.swap_chain.getCurrentTextureView().?;
defer back_buffer_view.release();
// TODO: expose options
const color_attachment = gpu.RenderPassColorAttachment{
.view = back_buffer_view,
.clear_value = clear_color,
.load_op = .clear,
.store_op = .store,
};
const pass_info = gpu.RenderPassDescriptor.init(.{
.color_attachments = &.{color_attachment},
});
engine.state.pass = engine.state.encoder.beginRenderPass(&pass_info);
}
fn endPass(engine: *Mod) void {
// End this pass
engine.state.pass.end();
engine.state.pass.release();
var command = engine.state.encoder.finish(null);
defer command.release();
engine.state.encoder.release();
engine.state.queue.submit(&[_]*gpu.CommandBuffer{command});
// Prepare for next pass
engine.state.encoder = engine.state.device.createCommandEncoder(&gpu.CommandEncoder.Descriptor{
.label = "engine.state.encoder",
});
}
fn present() void {
core.swap_chain.present();
}
};
pub const App = struct {
@ -110,7 +117,7 @@ pub const App = struct {
app.world.modules.send(.tick, .{});
try app.world.dispatch(); // dispatch .tick
try app.world.dispatch(); // dispatch any events produced by .tick
return app.world.mod.engine.state.exit;
return app.world.mod.engine.state.should_exit;
}
};

View file

@ -39,6 +39,15 @@ pub const components = struct {
pub const size = Vec2;
};
pub const events = .{
.{ .global = .deinit, .handler = deinit },
.{ .local = .init, .handler = init },
.{ .local = .initPipeline, .handler = initPipeline },
.{ .local = .updated, .handler = updated },
.{ .local = .preRender, .handler = preRender },
.{ .local = .render, .handler = render },
};
const Uniforms = extern struct {
// WebGPU requires that the size of struct fields are multiples of 16
// So we use align(16) and 'extern' to maintain field order
@ -121,251 +130,249 @@ pub const PipelineOptions = struct {
pipeline_layout: ?*gpu.PipelineLayout = null,
};
pub fn deinit(sprite_mod: *Mod) !void {
fn deinit(sprite_mod: *Mod) !void {
for (sprite_mod.state.pipelines.entries.items(.value)) |*pipeline| pipeline.deinit();
sprite_mod.state.pipelines.deinit(sprite_mod.allocator);
}
pub const local = struct {
pub fn init(
sprite_mod: *Mod,
) !void {
sprite_mod.state = .{
// TODO: struct default value initializers don't work
.pipelines = .{},
};
fn init(
sprite_mod: *Mod,
) !void {
sprite_mod.state = .{
// TODO: struct default value initializers don't work
.pipelines = .{},
};
}
fn initPipeline(
engine: *Engine.Mod,
sprite_mod: *Mod,
opt: PipelineOptions,
) !void {
const device = engine.state.device;
const pipeline = try sprite_mod.state.pipelines.getOrPut(engine.allocator, opt.pipeline);
if (pipeline.found_existing) {
pipeline.value_ptr.*.deinit();
}
pub fn initPipeline(
engine: *Engine.Mod,
sprite_mod: *Mod,
opt: PipelineOptions,
) !void {
const device = engine.state.device;
// Storage buffers
const sprite_buffer_cap = 1024 * 512; // TODO: allow user to specify preallocation
const transforms = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Mat4x4) * sprite_buffer_cap,
.mapped_at_creation = .false,
});
const uv_transforms = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Mat3x3) * sprite_buffer_cap,
.mapped_at_creation = .false,
});
const sizes = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Vec2) * sprite_buffer_cap,
.mapped_at_creation = .false,
});
const pipeline = try sprite_mod.state.pipelines.getOrPut(engine.allocator, opt.pipeline);
if (pipeline.found_existing) {
pipeline.value_ptr.*.deinit();
}
// Storage buffers
const sprite_buffer_cap = 1024 * 512; // TODO: allow user to specify preallocation
const transforms = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Mat4x4) * sprite_buffer_cap,
.mapped_at_creation = .false,
});
const uv_transforms = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Mat3x3) * sprite_buffer_cap,
.mapped_at_creation = .false,
});
const sizes = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Vec2) * sprite_buffer_cap,
.mapped_at_creation = .false,
});
const texture_sampler = opt.texture_sampler orelse device.createSampler(&.{
.mag_filter = .nearest,
.min_filter = .nearest,
});
const uniforms = device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(Uniforms),
.mapped_at_creation = .false,
});
const bind_group_layout = opt.bind_group_layout orelse device.createBindGroupLayout(
&gpu.BindGroupLayout.Descriptor.init(.{
.entries = &.{
gpu.BindGroupLayout.Entry.buffer(0, .{ .vertex = true }, .uniform, false, 0),
gpu.BindGroupLayout.Entry.buffer(1, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.buffer(2, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.buffer(3, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.sampler(4, .{ .fragment = true }, .filtering),
gpu.BindGroupLayout.Entry.texture(5, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(6, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(7, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(8, .{ .fragment = true }, .float, .dimension_2d, false),
},
}),
);
defer bind_group_layout.release();
const texture_view = opt.texture.createView(&gpu.TextureView.Descriptor{});
const texture2_view = if (opt.texture2) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
const texture3_view = if (opt.texture3) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
const texture4_view = if (opt.texture4) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
defer texture_view.release();
defer texture2_view.release();
defer texture3_view.release();
defer texture4_view.release();
const bind_group = opt.bind_group orelse device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = bind_group_layout,
.entries = &.{
gpu.BindGroup.Entry.buffer(0, uniforms, 0, @sizeOf(Uniforms)),
gpu.BindGroup.Entry.buffer(1, transforms, 0, @sizeOf(Mat4x4) * sprite_buffer_cap),
gpu.BindGroup.Entry.buffer(2, uv_transforms, 0, @sizeOf(Mat3x3) * sprite_buffer_cap),
gpu.BindGroup.Entry.buffer(3, sizes, 0, @sizeOf(Vec2) * sprite_buffer_cap),
gpu.BindGroup.Entry.sampler(4, texture_sampler),
gpu.BindGroup.Entry.textureView(5, texture_view),
gpu.BindGroup.Entry.textureView(6, texture2_view),
gpu.BindGroup.Entry.textureView(7, texture3_view),
gpu.BindGroup.Entry.textureView(8, texture4_view),
},
}),
);
const blend_state = opt.blend_state orelse gpu.BlendState{
.color = .{
.operation = .add,
.src_factor = .src_alpha,
.dst_factor = .one_minus_src_alpha,
const texture_sampler = opt.texture_sampler orelse device.createSampler(&.{
.mag_filter = .nearest,
.min_filter = .nearest,
});
const uniforms = device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(Uniforms),
.mapped_at_creation = .false,
});
const bind_group_layout = opt.bind_group_layout orelse device.createBindGroupLayout(
&gpu.BindGroupLayout.Descriptor.init(.{
.entries = &.{
gpu.BindGroupLayout.Entry.buffer(0, .{ .vertex = true }, .uniform, false, 0),
gpu.BindGroupLayout.Entry.buffer(1, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.buffer(2, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.buffer(3, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.sampler(4, .{ .fragment = true }, .filtering),
gpu.BindGroupLayout.Entry.texture(5, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(6, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(7, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(8, .{ .fragment = true }, .float, .dimension_2d, false),
},
.alpha = .{
.operation = .add,
.src_factor = .one,
.dst_factor = .zero,
}),
);
defer bind_group_layout.release();
const texture_view = opt.texture.createView(&gpu.TextureView.Descriptor{});
const texture2_view = if (opt.texture2) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
const texture3_view = if (opt.texture3) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
const texture4_view = if (opt.texture4) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
defer texture_view.release();
defer texture2_view.release();
defer texture3_view.release();
defer texture4_view.release();
const bind_group = opt.bind_group orelse device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = bind_group_layout,
.entries = &.{
gpu.BindGroup.Entry.buffer(0, uniforms, 0, @sizeOf(Uniforms)),
gpu.BindGroup.Entry.buffer(1, transforms, 0, @sizeOf(Mat4x4) * sprite_buffer_cap),
gpu.BindGroup.Entry.buffer(2, uv_transforms, 0, @sizeOf(Mat3x3) * sprite_buffer_cap),
gpu.BindGroup.Entry.buffer(3, sizes, 0, @sizeOf(Vec2) * sprite_buffer_cap),
gpu.BindGroup.Entry.sampler(4, texture_sampler),
gpu.BindGroup.Entry.textureView(5, texture_view),
gpu.BindGroup.Entry.textureView(6, texture2_view),
gpu.BindGroup.Entry.textureView(7, texture3_view),
gpu.BindGroup.Entry.textureView(8, texture4_view),
},
};
}),
);
const shader_module = opt.shader orelse device.createShaderModuleWGSL("sprite.wgsl", @embedFile("sprite.wgsl"));
defer shader_module.release();
const blend_state = opt.blend_state orelse gpu.BlendState{
.color = .{
.operation = .add,
.src_factor = .src_alpha,
.dst_factor = .one_minus_src_alpha,
},
.alpha = .{
.operation = .add,
.src_factor = .one,
.dst_factor = .zero,
},
};
const color_target = opt.color_target_state orelse gpu.ColorTargetState{
.format = core.descriptor.format,
.blend = &blend_state,
.write_mask = gpu.ColorWriteMaskFlags.all,
};
const fragment = opt.fragment_state orelse gpu.FragmentState.init(.{
const shader_module = opt.shader orelse device.createShaderModuleWGSL("sprite.wgsl", @embedFile("sprite.wgsl"));
defer shader_module.release();
const color_target = opt.color_target_state orelse gpu.ColorTargetState{
.format = core.descriptor.format,
.blend = &blend_state,
.write_mask = gpu.ColorWriteMaskFlags.all,
};
const fragment = opt.fragment_state orelse gpu.FragmentState.init(.{
.module = shader_module,
.entry_point = "fragMain",
.targets = &.{color_target},
});
const bind_group_layouts = [_]*gpu.BindGroupLayout{bind_group_layout};
const pipeline_layout = opt.pipeline_layout orelse device.createPipelineLayout(&gpu.PipelineLayout.Descriptor.init(.{
.bind_group_layouts = &bind_group_layouts,
}));
defer pipeline_layout.release();
const render_pipeline = device.createRenderPipeline(&gpu.RenderPipeline.Descriptor{
.fragment = &fragment,
.layout = pipeline_layout,
.vertex = gpu.VertexState{
.module = shader_module,
.entry_point = "fragMain",
.targets = &.{color_target},
});
.entry_point = "vertMain",
},
});
const bind_group_layouts = [_]*gpu.BindGroupLayout{bind_group_layout};
const pipeline_layout = opt.pipeline_layout orelse device.createPipelineLayout(&gpu.PipelineLayout.Descriptor.init(.{
.bind_group_layouts = &bind_group_layouts,
}));
defer pipeline_layout.release();
const render_pipeline = device.createRenderPipeline(&gpu.RenderPipeline.Descriptor{
.fragment = &fragment,
.layout = pipeline_layout,
.vertex = gpu.VertexState{
.module = shader_module,
.entry_point = "vertMain",
},
});
pipeline.value_ptr.* = Pipeline{
.render = render_pipeline,
.texture_sampler = texture_sampler,
.texture = opt.texture,
.texture2 = opt.texture2,
.texture3 = opt.texture3,
.texture4 = opt.texture4,
.bind_group = bind_group,
.uniforms = uniforms,
.num_sprites = 0,
.transforms = transforms,
.uv_transforms = uv_transforms,
.sizes = sizes,
};
pipeline.value_ptr.reference();
}
pipeline.value_ptr.* = Pipeline{
.render = render_pipeline,
.texture_sampler = texture_sampler,
.texture = opt.texture,
.texture2 = opt.texture2,
.texture3 = opt.texture3,
.texture4 = opt.texture4,
.bind_group = bind_group,
.uniforms = uniforms,
.num_sprites = 0,
.transforms = transforms,
.uv_transforms = uv_transforms,
.sizes = sizes,
};
pipeline.value_ptr.reference();
fn updated(
engine: *Engine.Mod,
sprite_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = sprite_mod.state.pipelines.getPtr(pipeline_id).?;
const device = engine.state.device;
// TODO: make sure these entities only belong to the given pipeline
// we need a better tagging mechanism
var archetypes_iter = engine.entities.query(.{ .all = &.{
.{ .mach_gfx_sprite = &.{
.uv_transform,
.transform,
.size,
.pipeline,
} },
} });
const encoder = device.createCommandEncoder(null);
defer encoder.release();
pipeline.num_sprites = 0;
var transforms_offset: usize = 0;
var uv_transforms_offset: usize = 0;
var sizes_offset: usize = 0;
while (archetypes_iter.next()) |archetype| {
const transforms = archetype.slice(.mach_gfx_sprite, .transform);
const uv_transforms = archetype.slice(.mach_gfx_sprite, .uv_transform);
const sizes = archetype.slice(.mach_gfx_sprite, .size);
// TODO: confirm the lifetime of these slices is OK for writeBuffer, how long do they need
// to live?
encoder.writeBuffer(pipeline.transforms, transforms_offset, transforms);
encoder.writeBuffer(pipeline.uv_transforms, uv_transforms_offset, uv_transforms);
encoder.writeBuffer(pipeline.sizes, sizes_offset, sizes);
transforms_offset += transforms.len;
uv_transforms_offset += uv_transforms.len;
sizes_offset += sizes.len;
pipeline.num_sprites += @intCast(transforms.len);
}
pub fn updated(
engine: *Engine.Mod,
sprite_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = sprite_mod.state.pipelines.getPtr(pipeline_id).?;
const device = engine.state.device;
var command = encoder.finish(null);
defer command.release();
// TODO: make sure these entities only belong to the given pipeline
// we need a better tagging mechanism
var archetypes_iter = engine.entities.query(.{ .all = &.{
.{ .mach_gfx_sprite = &.{
.uv_transform,
.transform,
.size,
.pipeline,
} },
} });
engine.state.queue.submit(&[_]*gpu.CommandBuffer{command});
}
const encoder = device.createCommandEncoder(null);
defer encoder.release();
fn preRender(
engine: *Engine.Mod,
sprite_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = sprite_mod.state.pipelines.get(pipeline_id).?;
pipeline.num_sprites = 0;
var transforms_offset: usize = 0;
var uv_transforms_offset: usize = 0;
var sizes_offset: usize = 0;
while (archetypes_iter.next()) |archetype| {
const transforms = archetype.slice(.mach_gfx_sprite, .transform);
const uv_transforms = archetype.slice(.mach_gfx_sprite, .uv_transform);
const sizes = archetype.slice(.mach_gfx_sprite, .size);
// Update uniform buffer
const proj = Mat4x4.projection2D(.{
.left = -@as(f32, @floatFromInt(core.size().width)) / 2,
.right = @as(f32, @floatFromInt(core.size().width)) / 2,
.bottom = -@as(f32, @floatFromInt(core.size().height)) / 2,
.top = @as(f32, @floatFromInt(core.size().height)) / 2,
.near = -0.1,
.far = 100000,
});
const uniforms = Uniforms{
.view_projection = proj,
// TODO: dimensions of other textures, number of textures present
.texture_size = vec2(
@as(f32, @floatFromInt(pipeline.texture.getWidth())),
@as(f32, @floatFromInt(pipeline.texture.getHeight())),
),
};
// TODO: confirm the lifetime of these slices is OK for writeBuffer, how long do they need
// to live?
encoder.writeBuffer(pipeline.transforms, transforms_offset, transforms);
encoder.writeBuffer(pipeline.uv_transforms, uv_transforms_offset, uv_transforms);
encoder.writeBuffer(pipeline.sizes, sizes_offset, sizes);
engine.state.encoder.writeBuffer(pipeline.uniforms, 0, &[_]Uniforms{uniforms});
}
transforms_offset += transforms.len;
uv_transforms_offset += uv_transforms.len;
sizes_offset += sizes.len;
pipeline.num_sprites += @intCast(transforms.len);
}
fn render(
engine: *Engine.Mod,
sprite_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = sprite_mod.state.pipelines.get(pipeline_id).?;
var command = encoder.finish(null);
defer command.release();
engine.state.queue.submit(&[_]*gpu.CommandBuffer{command});
}
pub fn preRender(
engine: *Engine.Mod,
sprite_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = sprite_mod.state.pipelines.get(pipeline_id).?;
// Update uniform buffer
const proj = Mat4x4.projection2D(.{
.left = -@as(f32, @floatFromInt(core.size().width)) / 2,
.right = @as(f32, @floatFromInt(core.size().width)) / 2,
.bottom = -@as(f32, @floatFromInt(core.size().height)) / 2,
.top = @as(f32, @floatFromInt(core.size().height)) / 2,
.near = -0.1,
.far = 100000,
});
const uniforms = Uniforms{
.view_projection = proj,
// TODO: dimensions of other textures, number of textures present
.texture_size = vec2(
@as(f32, @floatFromInt(pipeline.texture.getWidth())),
@as(f32, @floatFromInt(pipeline.texture.getHeight())),
),
};
engine.state.encoder.writeBuffer(pipeline.uniforms, 0, &[_]Uniforms{uniforms});
}
pub fn render(
engine: *Engine.Mod,
sprite_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = sprite_mod.state.pipelines.get(pipeline_id).?;
// Draw the sprite batch
const pass = engine.state.pass;
const total_vertices = pipeline.num_sprites * 6;
pass.setPipeline(pipeline.render);
// TODO: remove dynamic offsets?
pass.setBindGroup(0, pipeline.bind_group, &.{});
pass.draw(total_vertices, 1, 0, 0);
}
};
// Draw the sprite batch
const pass = engine.state.pass;
const total_vertices = pipeline.num_sprites * 6;
pass.setPipeline(pipeline.render);
// TODO: remove dynamic offsets?
pass.setBindGroup(0, pipeline.bind_group, &.{});
pass.draw(total_vertices, 1, 0, 0);
}

View file

@ -64,6 +64,15 @@ pub const components = struct {
pub const color = Vec4; // e.g. vec4(0, 0, 0, 1.0),
};
pub const events = .{
.{ .global = .deinit, .handler = deinit },
.{ .local = .init, .handler = init },
.{ .local = .initPipeline, .handler = initPipeline },
.{ .local = .updated, .handler = updated },
.{ .local = .preRender, .handler = preRender },
.{ .local = .render, .handler = render },
};
const Uniforms = extern struct {
// WebGPU requires that the size of struct fields are multiples of 16
// So we use align(16) and 'extern' to maintain field order
@ -171,383 +180,381 @@ pub const PipelineOptions = struct {
pipeline_layout: ?*gpu.PipelineLayout = null,
};
pub fn deinit(text_mod: *Mod) !void {
fn deinit(text_mod: *Mod) !void {
for (text_mod.state.pipelines.entries.items(.value)) |*pipeline| pipeline.deinit(text_mod.allocator);
text_mod.state.pipelines.deinit(text_mod.allocator);
}
pub const local = struct {
pub fn init(
text_mod: *Mod,
) !void {
text_mod.state = .{
// TODO: struct default value initializers don't work
.pipelines = .{},
};
fn init(
text_mod: *Mod,
) !void {
text_mod.state = .{
// TODO: struct default value initializers don't work
.pipelines = .{},
};
}
fn initPipeline(
engine: *Engine.Mod,
text_mod: *Mod,
opt: PipelineOptions,
) !void {
const device = engine.state.device;
const pipeline = try text_mod.state.pipelines.getOrPut(engine.allocator, opt.pipeline);
if (pipeline.found_existing) {
pipeline.value_ptr.*.deinit(engine.allocator);
}
pub fn initPipeline(
engine: *Engine.Mod,
text_mod: *Mod,
opt: PipelineOptions,
) !void {
const device = engine.state.device;
// Prepare texture for the font atlas.
const img_size = gpu.Extent3D{ .width = 1024, .height = 1024 };
const texture = device.createTexture(&.{
.size = img_size,
.format = .rgba8_unorm,
.usage = .{
.texture_binding = true,
.copy_dst = true,
.render_attachment = true,
},
});
const texture_atlas = try gfx.Atlas.init(
engine.allocator,
img_size.width,
.rgba,
);
const pipeline = try text_mod.state.pipelines.getOrPut(engine.allocator, opt.pipeline);
if (pipeline.found_existing) {
pipeline.value_ptr.*.deinit(engine.allocator);
}
// Storage buffers
const buffer_cap = 1024 * 128; // TODO: allow user to specify preallocation
const glyph_buffer_cap = 1024 * 512; // TODO: allow user to specify preallocation
const transforms = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Mat4x4) * buffer_cap,
.mapped_at_creation = .false,
});
const colors = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Vec4) * buffer_cap,
.mapped_at_creation = .false,
});
const glyphs = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Glyph) * glyph_buffer_cap,
.mapped_at_creation = .false,
});
// Prepare texture for the font atlas.
const img_size = gpu.Extent3D{ .width = 1024, .height = 1024 };
const texture = device.createTexture(&.{
.size = img_size,
.format = .rgba8_unorm,
.usage = .{
.texture_binding = true,
.copy_dst = true,
.render_attachment = true,
const texture_sampler = opt.texture_sampler orelse device.createSampler(&.{
.mag_filter = .nearest,
.min_filter = .nearest,
});
const uniforms = device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(Uniforms),
.mapped_at_creation = .false,
});
const bind_group_layout = opt.bind_group_layout orelse device.createBindGroupLayout(
&gpu.BindGroupLayout.Descriptor.init(.{
.entries = &.{
gpu.BindGroupLayout.Entry.buffer(0, .{ .vertex = true }, .uniform, false, 0),
gpu.BindGroupLayout.Entry.buffer(1, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.buffer(2, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.buffer(3, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.sampler(4, .{ .fragment = true }, .filtering),
gpu.BindGroupLayout.Entry.texture(5, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(6, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(7, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(8, .{ .fragment = true }, .float, .dimension_2d, false),
},
});
const texture_atlas = try gfx.Atlas.init(
engine.allocator,
img_size.width,
.rgba,
);
}),
);
defer bind_group_layout.release();
// Storage buffers
const buffer_cap = 1024 * 128; // TODO: allow user to specify preallocation
const glyph_buffer_cap = 1024 * 512; // TODO: allow user to specify preallocation
const transforms = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Mat4x4) * buffer_cap,
.mapped_at_creation = .false,
});
const colors = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Vec4) * buffer_cap,
.mapped_at_creation = .false,
});
const glyphs = device.createBuffer(&.{
.usage = .{ .storage = true, .copy_dst = true },
.size = @sizeOf(Glyph) * glyph_buffer_cap,
.mapped_at_creation = .false,
});
const texture_view = texture.createView(&gpu.TextureView.Descriptor{});
const texture2_view = if (opt.texture2) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
const texture3_view = if (opt.texture3) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
const texture4_view = if (opt.texture4) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
defer texture_view.release();
defer texture2_view.release();
defer texture3_view.release();
defer texture4_view.release();
const texture_sampler = opt.texture_sampler orelse device.createSampler(&.{
.mag_filter = .nearest,
.min_filter = .nearest,
});
const uniforms = device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(Uniforms),
.mapped_at_creation = .false,
});
const bind_group_layout = opt.bind_group_layout orelse device.createBindGroupLayout(
&gpu.BindGroupLayout.Descriptor.init(.{
.entries = &.{
gpu.BindGroupLayout.Entry.buffer(0, .{ .vertex = true }, .uniform, false, 0),
gpu.BindGroupLayout.Entry.buffer(1, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.buffer(2, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.buffer(3, .{ .vertex = true }, .read_only_storage, false, 0),
gpu.BindGroupLayout.Entry.sampler(4, .{ .fragment = true }, .filtering),
gpu.BindGroupLayout.Entry.texture(5, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(6, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(7, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.texture(8, .{ .fragment = true }, .float, .dimension_2d, false),
},
}),
);
defer bind_group_layout.release();
const texture_view = texture.createView(&gpu.TextureView.Descriptor{});
const texture2_view = if (opt.texture2) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
const texture3_view = if (opt.texture3) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
const texture4_view = if (opt.texture4) |tex| tex.createView(&gpu.TextureView.Descriptor{}) else texture_view;
defer texture_view.release();
defer texture2_view.release();
defer texture3_view.release();
defer texture4_view.release();
const bind_group = opt.bind_group orelse device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = bind_group_layout,
.entries = &.{
gpu.BindGroup.Entry.buffer(0, uniforms, 0, @sizeOf(Uniforms)),
gpu.BindGroup.Entry.buffer(1, transforms, 0, @sizeOf(Mat4x4) * buffer_cap),
gpu.BindGroup.Entry.buffer(2, colors, 0, @sizeOf(Vec4) * buffer_cap),
gpu.BindGroup.Entry.buffer(3, glyphs, 0, @sizeOf(Glyph) * glyph_buffer_cap),
gpu.BindGroup.Entry.sampler(4, texture_sampler),
gpu.BindGroup.Entry.textureView(5, texture_view),
gpu.BindGroup.Entry.textureView(6, texture2_view),
gpu.BindGroup.Entry.textureView(7, texture3_view),
gpu.BindGroup.Entry.textureView(8, texture4_view),
},
}),
);
const blend_state = opt.blend_state orelse gpu.BlendState{
.color = .{
.operation = .add,
.src_factor = .src_alpha,
.dst_factor = .one_minus_src_alpha,
const bind_group = opt.bind_group orelse device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = bind_group_layout,
.entries = &.{
gpu.BindGroup.Entry.buffer(0, uniforms, 0, @sizeOf(Uniforms)),
gpu.BindGroup.Entry.buffer(1, transforms, 0, @sizeOf(Mat4x4) * buffer_cap),
gpu.BindGroup.Entry.buffer(2, colors, 0, @sizeOf(Vec4) * buffer_cap),
gpu.BindGroup.Entry.buffer(3, glyphs, 0, @sizeOf(Glyph) * glyph_buffer_cap),
gpu.BindGroup.Entry.sampler(4, texture_sampler),
gpu.BindGroup.Entry.textureView(5, texture_view),
gpu.BindGroup.Entry.textureView(6, texture2_view),
gpu.BindGroup.Entry.textureView(7, texture3_view),
gpu.BindGroup.Entry.textureView(8, texture4_view),
},
.alpha = .{
.operation = .add,
.src_factor = .one,
.dst_factor = .zero,
},
};
}),
);
const shader_module = opt.shader orelse device.createShaderModuleWGSL("text.wgsl", @embedFile("text.wgsl"));
defer shader_module.release();
const blend_state = opt.blend_state orelse gpu.BlendState{
.color = .{
.operation = .add,
.src_factor = .src_alpha,
.dst_factor = .one_minus_src_alpha,
},
.alpha = .{
.operation = .add,
.src_factor = .one,
.dst_factor = .zero,
},
};
const color_target = opt.color_target_state orelse gpu.ColorTargetState{
.format = core.descriptor.format,
.blend = &blend_state,
.write_mask = gpu.ColorWriteMaskFlags.all,
};
const fragment = opt.fragment_state orelse gpu.FragmentState.init(.{
const shader_module = opt.shader orelse device.createShaderModuleWGSL("text.wgsl", @embedFile("text.wgsl"));
defer shader_module.release();
const color_target = opt.color_target_state orelse gpu.ColorTargetState{
.format = core.descriptor.format,
.blend = &blend_state,
.write_mask = gpu.ColorWriteMaskFlags.all,
};
const fragment = opt.fragment_state orelse gpu.FragmentState.init(.{
.module = shader_module,
.entry_point = "fragMain",
.targets = &.{color_target},
});
const bind_group_layouts = [_]*gpu.BindGroupLayout{bind_group_layout};
const pipeline_layout = opt.pipeline_layout orelse device.createPipelineLayout(&gpu.PipelineLayout.Descriptor.init(.{
.bind_group_layouts = &bind_group_layouts,
}));
defer pipeline_layout.release();
const render_pipeline = device.createRenderPipeline(&gpu.RenderPipeline.Descriptor{
.fragment = &fragment,
.layout = pipeline_layout,
.vertex = gpu.VertexState{
.module = shader_module,
.entry_point = "fragMain",
.targets = &.{color_target},
});
.entry_point = "vertMain",
},
});
const bind_group_layouts = [_]*gpu.BindGroupLayout{bind_group_layout};
const pipeline_layout = opt.pipeline_layout orelse device.createPipelineLayout(&gpu.PipelineLayout.Descriptor.init(.{
.bind_group_layouts = &bind_group_layouts,
}));
defer pipeline_layout.release();
const render_pipeline = device.createRenderPipeline(&gpu.RenderPipeline.Descriptor{
.fragment = &fragment,
.layout = pipeline_layout,
.vertex = gpu.VertexState{
.module = shader_module,
.entry_point = "vertMain",
},
});
pipeline.value_ptr.* = Pipeline{
.render = render_pipeline,
.texture_sampler = texture_sampler,
.texture = texture,
.texture_atlas = texture_atlas,
.texture2 = opt.texture2,
.texture3 = opt.texture3,
.texture4 = opt.texture4,
.bind_group = bind_group,
.uniforms = uniforms,
.num_texts = 0,
.num_glyphs = 0,
.transforms = transforms,
.colors = colors,
.glyphs = glyphs,
};
pipeline.value_ptr.reference();
}
pipeline.value_ptr.* = Pipeline{
.render = render_pipeline,
.texture_sampler = texture_sampler,
.texture = texture,
.texture_atlas = texture_atlas,
.texture2 = opt.texture2,
.texture3 = opt.texture3,
.texture4 = opt.texture4,
.bind_group = bind_group,
.uniforms = uniforms,
.num_texts = 0,
.num_glyphs = 0,
.transforms = transforms,
.colors = colors,
.glyphs = glyphs,
};
pipeline.value_ptr.reference();
}
fn updated(
engine: *Engine.Mod,
text_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = text_mod.state.pipelines.getPtr(pipeline_id).?;
const device = engine.state.device;
pub fn updated(
engine: *Engine.Mod,
text_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = text_mod.state.pipelines.getPtr(pipeline_id).?;
const device = engine.state.device;
// TODO: make sure these entities only belong to the given pipeline
// we need a better tagging mechanism
var archetypes_iter = engine.entities.query(.{ .all = &.{
.{ .mach_gfx_text = &.{
.pipeline,
.transform,
.text,
} },
} });
// TODO: make sure these entities only belong to the given pipeline
// we need a better tagging mechanism
var archetypes_iter = engine.entities.query(.{ .all = &.{
.{ .mach_gfx_text = &.{
.pipeline,
.transform,
.text,
} },
} });
const encoder = device.createCommandEncoder(null);
defer encoder.release();
const encoder = device.createCommandEncoder(null);
defer encoder.release();
pipeline.num_texts = 0;
pipeline.num_glyphs = 0;
var glyphs = std.ArrayListUnmanaged(Glyph){};
var transforms_offset: usize = 0;
var texture_update = false;
while (archetypes_iter.next()) |archetype| {
const transforms = archetype.slice(.mach_gfx_text, .transform);
pipeline.num_texts = 0;
pipeline.num_glyphs = 0;
var glyphs = std.ArrayListUnmanaged(Glyph){};
var transforms_offset: usize = 0;
var texture_update = false;
while (archetypes_iter.next()) |archetype| {
const transforms = archetype.slice(.mach_gfx_text, .transform);
// TODO: confirm the lifetime of these slices is OK for writeBuffer, how long do they need
// to live?
encoder.writeBuffer(pipeline.transforms, transforms_offset, transforms);
// encoder.writeBuffer(pipeline.colors, colors_offset, colors);
// TODO: confirm the lifetime of these slices is OK for writeBuffer, how long do they need
// to live?
encoder.writeBuffer(pipeline.transforms, transforms_offset, transforms);
// encoder.writeBuffer(pipeline.colors, colors_offset, colors);
transforms_offset += transforms.len;
// colors_offset += colors.len;
pipeline.num_texts += @intCast(transforms.len);
transforms_offset += transforms.len;
// colors_offset += colors.len;
pipeline.num_texts += @intCast(transforms.len);
// Render texts
// TODO: this is very expensive and shouldn't be done here, should be done only on detected
// text change.
const px_density = 2.0;
const segment_lists = archetype.slice(.mach_gfx_text, .text);
const style_lists = archetype.slice(.mach_gfx_text, .style);
for (segment_lists, style_lists) |segments, styles| {
var origin_x: f32 = 0.0;
var origin_y: f32 = 0.0;
// Render texts
// TODO: this is very expensive and shouldn't be done here, should be done only on detected
// text change.
const px_density = 2.0;
const segment_lists = archetype.slice(.mach_gfx_text, .text);
const style_lists = archetype.slice(.mach_gfx_text, .style);
for (segment_lists, style_lists) |segments, styles| {
var origin_x: f32 = 0.0;
var origin_y: f32 = 0.0;
for (segments, styles) |segment, style| {
// Load a font
const font_name = engine.entities.getComponent(style, .mach_gfx_text, .font_name).?;
_ = font_name; // TODO: actually use font name
const font_bytes = @import("font-assets").fira_sans_regular_ttf;
var font = try gfx.Font.initBytes(font_bytes);
defer font.deinit(engine.allocator);
for (segments, styles) |segment, style| {
// Load a font
const font_name = engine.entities.getComponent(style, .mach_gfx_text, .font_name).?;
_ = font_name; // TODO: actually use font name
const font_bytes = @import("font-assets").fira_sans_regular_ttf;
var font = try gfx.Font.initBytes(font_bytes);
defer font.deinit(engine.allocator);
const font_size = engine.entities.getComponent(style, .mach_gfx_text, .font_size).?;
const font_weight = engine.entities.getComponent(style, .mach_gfx_text, .font_weight);
const italic = engine.entities.getComponent(style, .mach_gfx_text, .italic);
const color = engine.entities.getComponent(style, .mach_gfx_text, .color);
// TODO: actually apply these
_ = font_weight;
_ = italic;
_ = color;
const font_size = engine.entities.getComponent(style, .mach_gfx_text, .font_size).?;
const font_weight = engine.entities.getComponent(style, .mach_gfx_text, .font_weight);
const italic = engine.entities.getComponent(style, .mach_gfx_text, .italic);
const color = engine.entities.getComponent(style, .mach_gfx_text, .color);
// TODO: actually apply these
_ = font_weight;
_ = italic;
_ = color;
// Create a text shaper
var run = try gfx.TextRun.init();
run.font_size_px = font_size;
run.px_density = 2; // TODO
// Create a text shaper
var run = try gfx.TextRun.init();
run.font_size_px = font_size;
run.px_density = 2; // TODO
defer run.deinit();
defer run.deinit();
run.addText(segment);
try font.shape(&run);
run.addText(segment);
try font.shape(&run);
while (run.next()) |glyph| {
const codepoint = segment[glyph.cluster];
// TODO: use flags(?) to detect newline, or at least something more reliable?
if (codepoint != '\n') {
const region = try pipeline.regions.getOrPut(engine.allocator, .{
.index = glyph.glyph_index,
.size = @bitCast(font_size),
while (run.next()) |glyph| {
const codepoint = segment[glyph.cluster];
// TODO: use flags(?) to detect newline, or at least something more reliable?
if (codepoint != '\n') {
const region = try pipeline.regions.getOrPut(engine.allocator, .{
.index = glyph.glyph_index,
.size = @bitCast(font_size),
});
if (!region.found_existing) {
const rendered_glyph = try font.render(engine.allocator, glyph.glyph_index, .{
.font_size_px = run.font_size_px,
});
if (!region.found_existing) {
const rendered_glyph = try font.render(engine.allocator, glyph.glyph_index, .{
.font_size_px = run.font_size_px,
});
if (rendered_glyph.bitmap) |bitmap| {
var glyph_atlas_region = try pipeline.texture_atlas.reserve(engine.allocator, rendered_glyph.width, rendered_glyph.height);
pipeline.texture_atlas.set(glyph_atlas_region, @as([*]const u8, @ptrCast(bitmap.ptr))[0 .. bitmap.len * 4]);
texture_update = true;
if (rendered_glyph.bitmap) |bitmap| {
var glyph_atlas_region = try pipeline.texture_atlas.reserve(engine.allocator, rendered_glyph.width, rendered_glyph.height);
pipeline.texture_atlas.set(glyph_atlas_region, @as([*]const u8, @ptrCast(bitmap.ptr))[0 .. bitmap.len * 4]);
texture_update = true;
// Exclude the 1px blank space margin when describing the region of the texture
// that actually represents the glyph.
const margin = 1;
glyph_atlas_region.x += margin;
glyph_atlas_region.y += margin;
glyph_atlas_region.width -= margin * 2;
glyph_atlas_region.height -= margin * 2;
region.value_ptr.* = glyph_atlas_region;
} else {
// whitespace
region.value_ptr.* = gfx.Atlas.Region{
.width = 0,
.height = 0,
.x = 0,
.y = 0,
};
}
// Exclude the 1px blank space margin when describing the region of the texture
// that actually represents the glyph.
const margin = 1;
glyph_atlas_region.x += margin;
glyph_atlas_region.y += margin;
glyph_atlas_region.width -= margin * 2;
glyph_atlas_region.height -= margin * 2;
region.value_ptr.* = glyph_atlas_region;
} else {
// whitespace
region.value_ptr.* = gfx.Atlas.Region{
.width = 0,
.height = 0,
.x = 0,
.y = 0,
};
}
const r = region.value_ptr.*;
const size = vec2(@floatFromInt(r.width), @floatFromInt(r.height));
try glyphs.append(engine.allocator, .{
.pos = vec2(
origin_x + glyph.offset.x(),
origin_y - (size.y() - glyph.offset.y()),
).divScalar(px_density),
.size = size.divScalar(px_density),
.text_index = 0,
.uv_pos = vec2(@floatFromInt(r.x), @floatFromInt(r.y)),
});
pipeline.num_glyphs += 1;
}
if (codepoint == '\n') {
origin_x = 0;
origin_y -= font_size;
} else {
origin_x += glyph.advance.x();
}
const r = region.value_ptr.*;
const size = vec2(@floatFromInt(r.width), @floatFromInt(r.height));
try glyphs.append(engine.allocator, .{
.pos = vec2(
origin_x + glyph.offset.x(),
origin_y - (size.y() - glyph.offset.y()),
).divScalar(px_density),
.size = size.divScalar(px_density),
.text_index = 0,
.uv_pos = vec2(@floatFromInt(r.x), @floatFromInt(r.y)),
});
pipeline.num_glyphs += 1;
}
if (codepoint == '\n') {
origin_x = 0;
origin_y -= font_size;
} else {
origin_x += glyph.advance.x();
}
}
}
}
// TODO: could writeBuffer check for zero?
if (glyphs.items.len > 0) encoder.writeBuffer(pipeline.glyphs, 0, glyphs.items);
defer glyphs.deinit(engine.allocator);
if (texture_update) {
// rgba32_pixels
// TODO: use proper texture dimensions here
const img_size = gpu.Extent3D{ .width = 1024, .height = 1024 };
const data_layout = gpu.Texture.DataLayout{
.bytes_per_row = @as(u32, @intCast(img_size.width * 4)),
.rows_per_image = @as(u32, @intCast(img_size.height)),
};
engine.state.queue.writeTexture(
&.{ .texture = pipeline.texture },
&data_layout,
&img_size,
pipeline.texture_atlas.data,
);
}
var command = encoder.finish(null);
defer command.release();
engine.state.queue.submit(&[_]*gpu.CommandBuffer{command});
}
pub fn preRender(
engine: *Engine.Mod,
text_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = text_mod.state.pipelines.get(pipeline_id).?;
// Update uniform buffer
const proj = Mat4x4.projection2D(.{
.left = -@as(f32, @floatFromInt(core.size().width)) / 2,
.right = @as(f32, @floatFromInt(core.size().width)) / 2,
.bottom = -@as(f32, @floatFromInt(core.size().height)) / 2,
.top = @as(f32, @floatFromInt(core.size().height)) / 2,
.near = -0.1,
.far = 100000,
});
const uniforms = Uniforms{
.view_projection = proj,
// TODO: dimensions of other textures, number of textures present
.texture_size = vec2(
@as(f32, @floatFromInt(pipeline.texture.getWidth())),
@as(f32, @floatFromInt(pipeline.texture.getHeight())),
),
// TODO: could writeBuffer check for zero?
if (glyphs.items.len > 0) encoder.writeBuffer(pipeline.glyphs, 0, glyphs.items);
defer glyphs.deinit(engine.allocator);
if (texture_update) {
// rgba32_pixels
// TODO: use proper texture dimensions here
const img_size = gpu.Extent3D{ .width = 1024, .height = 1024 };
const data_layout = gpu.Texture.DataLayout{
.bytes_per_row = @as(u32, @intCast(img_size.width * 4)),
.rows_per_image = @as(u32, @intCast(img_size.height)),
};
engine.state.encoder.writeBuffer(pipeline.uniforms, 0, &[_]Uniforms{uniforms});
engine.state.queue.writeTexture(
&.{ .texture = pipeline.texture },
&data_layout,
&img_size,
pipeline.texture_atlas.data,
);
}
pub fn render(
engine: *Engine.Mod,
text_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = text_mod.state.pipelines.get(pipeline_id).?;
var command = encoder.finish(null);
defer command.release();
// Draw the text batch
const pass = engine.state.pass;
const total_vertices = pipeline.num_glyphs * 6;
pass.setPipeline(pipeline.render);
// TODO: remove dynamic offsets?
pass.setBindGroup(0, pipeline.bind_group, &.{});
pass.draw(total_vertices, 1, 0, 0);
}
};
engine.state.queue.submit(&[_]*gpu.CommandBuffer{command});
}
fn preRender(
engine: *Engine.Mod,
text_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = text_mod.state.pipelines.get(pipeline_id).?;
// Update uniform buffer
const proj = Mat4x4.projection2D(.{
.left = -@as(f32, @floatFromInt(core.size().width)) / 2,
.right = @as(f32, @floatFromInt(core.size().width)) / 2,
.bottom = -@as(f32, @floatFromInt(core.size().height)) / 2,
.top = @as(f32, @floatFromInt(core.size().height)) / 2,
.near = -0.1,
.far = 100000,
});
const uniforms = Uniforms{
.view_projection = proj,
// TODO: dimensions of other textures, number of textures present
.texture_size = vec2(
@as(f32, @floatFromInt(pipeline.texture.getWidth())),
@as(f32, @floatFromInt(pipeline.texture.getHeight())),
),
};
engine.state.encoder.writeBuffer(pipeline.uniforms, 0, &[_]Uniforms{uniforms});
}
fn render(
engine: *Engine.Mod,
text_mod: *Mod,
pipeline_id: u32,
) !void {
const pipeline = text_mod.state.pipelines.get(pipeline_id).?;
// Draw the text batch
const pass = engine.state.pass;
const total_vertices = pipeline.num_glyphs * 6;
pass.setPipeline(pipeline.render);
// TODO: remove dynamic offsets?
pass.setBindGroup(0, pipeline.bind_group, &.{});
pass.draw(total_vertices, 1, 0, 0);
}

View file

@ -2,17 +2,21 @@ const builtin = @import("builtin");
const std = @import("std");
const testing = @import("testing.zig");
/// Verifies that T matches the basic layout of a Mach module
pub fn Module(comptime T: type) type {
if (@typeInfo(T) != .Struct) @compileError("Module must be a struct type. Found:" ++ @typeName(T));
if (!@hasDecl(T, "name")) @compileError("Module must have `pub const name = .foobar;`");
if (@typeInfo(@TypeOf(T.name)) != .EnumLiteral) @compileError("Module must have `pub const name = .foobar;`, found type:" ++ @typeName(T.name));
/// Verifies that M matches the basic layout of a Mach module
pub fn Module(comptime M: type) type {
if (@typeInfo(M) != .Struct) @compileError("mach: expected module struct, found: " ++ @typeName(M));
if (!@hasDecl(M, "name")) @compileError("mach: module must have `pub const name = .foobar;`");
if (@typeInfo(@TypeOf(M.name)) != .EnumLiteral) @compileError("mach: module must have `pub const name = .foobar;`, found type:" ++ @typeName(M.name));
const prefix = "mach: module ." ++ @tagName(M.name) ++ " ";
if (!@hasDecl(M, "events")) @compileError(prefix ++ "must have `pub const events = .{};`");
validateEvents("mach: module ." ++ @tagName(M.name) ++ " ", M.events);
// TODO: move this to ecs
if (@hasDecl(T, "components")) {
if (@typeInfo(T.components) != .Struct) @compileError("Module.components must be `pub const components = struct { ... };`, found type:" ++ @typeName(T.components));
if (@hasDecl(M, "components")) {
if (@typeInfo(M.components) != .Struct) @compileError("Module.components must be `pub const components = struct { ... };`, found type:" ++ @typeName(M.components));
}
return T;
return M;
}
// TODO: implement serialization constraints
@ -65,49 +69,63 @@ pub fn Modules(comptime mods: anytype) type {
/// Returns an args tuple representing the standard, uninjected, arguments which the given
/// local event handler requires.
fn LocalArgs(module_name: ModuleName(mods), event_name: EventName(mods)) type {
fn LocalArgs(module_name: ModuleName(mods), event_name: LocalEventEnum(mods)) type {
inline for (modules) |M| {
_ = Module(M); // Validate the module
if (M.name != module_name) continue;
if (!@hasDecl(M, "local")) @compileError("Module " ++ @tagName(module_name) ++ " has no `pub const local = struct { ... };` event handlers");
if (!@hasDecl(M.local, @tagName(event_name))) @compileError("Module " ++ @tagName(module_name) ++ ".local has no event handler named: " ++ @tagName(event_name));
const handler = @field(M.local, @tagName(event_name));
switch (@typeInfo(@TypeOf(handler))) {
inline for (M.events) |event| {
const Ev = @TypeOf(event);
const name_tag = if (@hasField(Ev, "local")) event.local else continue;
if (name_tag != event_name) continue;
const Handler = switch (@typeInfo(@TypeOf(event.handler))) {
.Fn => @TypeOf(event.handler),
.Type => |t| switch (@typeInfo(t)) {
.Fn => event.handler,
else => unreachable,
},
else => unreachable,
};
// TODO: passing std.meta.Tuple here instead of TupleHACK results in a compiler
// segfault. The only difference is that TupleHACk does not produce a real tuple,
// `@Type(.{.Struct = .{ .is_tuple = false }})` instead of `.is_tuple = true`.
.Fn => return UninjectedArgsTuple(TupleHACK, @TypeOf(handler)),
// Note: This means the module does have some other field by the same name, but it is not a function.
// TODO: allow pre-declarations
else => @compileError("Module " ++ @tagName(module_name) ++ ".local." ++ @tagName(event_name) ++ " is not a function"),
return UninjectedArgsTuple(TupleHACK, Handler);
}
@compileError("mach: module ." ++ @tagName(M.name) ++ " has no .local event handler for ." ++ @tagName(event_name));
}
}
/// Returns an args tuple representing the standard, uninjected, arguments which the given
/// global event handler requires.
fn Args(event_name: EventName(mods)) type {
fn Args(event_name: GlobalEventEnum(mods)) type {
inline for (modules) |M| {
// TODO: enforce any defined event handlers of the same name have the same argument types
if (@hasDecl(M, @tagName(event_name))) {
const Handler = switch (@typeInfo(@TypeOf(@field(M, @tagName(event_name))))) {
.Fn => @TypeOf(@field(M, @tagName(event_name))),
.Type => switch (@typeInfo(@field(M, @tagName(event_name)))) {
.Fn => @field(M, @tagName(event_name)),
else => continue,
_ = Module(M); // Validate the module
inline for (M.events) |event| {
const Ev = @TypeOf(event);
const name_tag = if (@hasField(Ev, "global")) event.global else continue;
if (name_tag != event_name) continue;
const Handler = switch (@typeInfo(@TypeOf(event.handler))) {
.Fn => @TypeOf(event.handler),
.Type => switch (@typeInfo(event.handler)) {
.Fn => event.handler,
else => unreachable,
},
else => continue,
else => unreachable,
};
return UninjectedArgsTuple(std.meta.Tuple, Handler);
}
}
@compileError("No global event handler " ++ @tagName(event_name) ++ " is defined in any module.");
@compileError("No global event handler ." ++ @tagName(event_name) ++ " is defined in any module.");
}
/// Send a global event
pub fn send(
m: *@This(),
// TODO: is a variant of this function where event_name is not comptime known, but asserted to be a valid enum, useful?
comptime event_name: EventName(mods),
comptime event_name: GlobalEventEnum(mods),
args: Args(event_name),
) void {
// TODO: comptime safety/debugging
@ -119,7 +137,7 @@ pub fn Modules(comptime mods: anytype) type {
m: *@This(),
// TODO: is a variant of this function where module_name/event_name is not comptime known, but asserted to be a valid enum, useful?
comptime module_name: ModuleName(mods),
comptime event_name: EventName(mods),
comptime event_name: LocalEventEnum(mods),
args: LocalArgs(module_name, event_name),
) void {
// TODO: comptime safety/debugging
@ -187,23 +205,29 @@ pub fn Modules(comptime mods: anytype) type {
try @This().callLocal(@enumFromInt(module_name), @enumFromInt(ev.event_name), ev.args_slice, injectable);
} else {
// TODO: dispatch arguments
try @This().call(@enumFromInt(ev.event_name), ev.args_slice, injectable);
try @This().callGlobal(@enumFromInt(ev.event_name), ev.args_slice, injectable);
}
}
}
/// Call global event handler with the specified name in all modules
inline fn call(event_name: EventName(mods), args: []u8, injectable: anytype) !void {
inline fn callGlobal(event_name: GlobalEventEnum(mods), args: []u8, injectable: anytype) !void {
if (@typeInfo(@TypeOf(event_name)).Enum.fields.len == 0) return;
switch (event_name) {
inline else => |name| {
inline else => |ev_name| {
inline for (modules) |M| {
if (@hasDecl(M, @tagName(name))) {
switch (@typeInfo(@TypeOf(@field(M, @tagName(name))))) {
.Fn => {
const handler = @field(M, @tagName(name));
try callHandler(handler, args, injectable);
_ = Module(M); // Validate the module
inline for (M.events) |event| {
const Ev = @TypeOf(event);
const name_tag = if (@hasField(Ev, "global")) event.global else continue;
if (name_tag != ev_name) continue;
switch (@typeInfo(@TypeOf(event.handler))) {
.Fn => try callHandler(event.handler, args, injectable),
.Type => switch (@typeInfo(event.handler)) {
.Fn => {}, // Pre-declaration of what args an event has, nothing to run.
else => unreachable,
},
else => {},
else => unreachable,
}
}
}
@ -212,22 +236,29 @@ pub fn Modules(comptime mods: anytype) type {
}
/// Call local event handler with the specified name in the specified module
inline fn callLocal(module_name: ModuleName(mods), event_name: EventName(mods), args: []u8, injectable: anytype) !void {
inline fn callLocal(module_name: ModuleName(mods), event_name: LocalEventEnum(mods), args: []u8, injectable: anytype) !void {
if (@typeInfo(@TypeOf(event_name)).Enum.fields.len == 0) return;
// TODO: invert switch case for hypothetically better branch prediction
switch (module_name) {
inline else => |mod_name| {
switch (event_name) {
inline else => |ev_name| {
const M = @field(NamespacedModules(@This().modules){}, @tagName(mod_name));
// TODO: no need for hasDecl, assertion should be event can be sent at send() time.
if (@hasDecl(M, "local") and @hasDecl(M.local, @tagName(ev_name))) {
const handler = @field(M.local, @tagName(ev_name));
switch (@typeInfo(@TypeOf(handler))) {
.Fn => {
try callHandler(handler, args, injectable);
_ = Module(M); // Validate the module
inline for (M.events) |event| {
const Ev = @TypeOf(event);
const name_tag = if (@hasField(Ev, "local")) event.local else continue;
if (name_tag != ev_name) continue;
switch (@typeInfo(@TypeOf(event.handler))) {
.Fn => try callHandler(event.handler, args, injectable),
.Type => switch (@typeInfo(event.handler)) {
.Fn => {}, // Pre-declaration of what args an event has, nothing to run.
else => unreachable,
},
else => {},
else => unreachable,
}
break;
}
},
}
@ -336,37 +367,29 @@ fn UninjectedArgsTuple(
return Tuple(std_args);
}
/// enum describing every possible comptime-known global event name.
fn GlobalEvent(comptime mods: anytype) type {
/// enum describing every possible comptime-known local event name
fn LocalEventEnum(comptime mods: anytype) type {
var enum_fields: []const std.builtin.Type.EnumField = &[0]std.builtin.Type.EnumField{};
var i: u32 = 0;
for (mods) |M| {
// Global event handlers
for (@typeInfo(M).Struct.decls) |decl| {
const is_event_handler = switch (@typeInfo(@TypeOf(@field(M, decl.name)))) {
.Fn => true,
.Type => switch (@typeInfo(@field(M, decl.name))) {
.Fn => true,
else => false,
},
else => false,
_ = Module(M); // Validate the module
inline for (M.events) |event| {
const Event = @TypeOf(event);
const name_tag = if (@hasField(Event, "local")) event.local else continue;
const exists_already = blk: {
for (enum_fields) |existing| if (std.mem.eql(u8, existing.name, @tagName(name_tag))) break :blk true;
break :blk false;
};
if (is_event_handler) {
const exists_already = blk2: {
for (enum_fields) |existing| if (std.mem.eql(u8, existing.name, decl.name)) break :blk2 true;
break :blk2 false;
};
if (!exists_already) {
enum_fields = enum_fields ++ [_]std.builtin.Type.EnumField{.{ .name = decl.name, .value = i }};
i += 1;
}
if (!exists_already) {
enum_fields = enum_fields ++ [_]std.builtin.Type.EnumField{.{ .name = @tagName(name_tag), .value = i }};
i += 1;
}
}
}
return @Type(.{
.Enum = .{
.tag_type = std.math.IntFittingRange(0, enum_fields.len - 1),
.tag_type = if (enum_fields.len > 0) std.math.IntFittingRange(0, enum_fields.len - 1) else u0,
.fields = enum_fields,
.decls = &[_]std.builtin.Type.Declaration{},
.is_exhaustive = true,
@ -374,55 +397,29 @@ fn GlobalEvent(comptime mods: anytype) type {
});
}
/// enum describing every possible comptime-known event name
fn EventName(comptime mods: anytype) type {
/// enum describing every possible comptime-known global event name
fn GlobalEventEnum(comptime mods: anytype) type {
var enum_fields: []const std.builtin.Type.EnumField = &[0]std.builtin.Type.EnumField{};
var i: u32 = 0;
for (mods) |M| {
// Global event handlers
for (@typeInfo(M).Struct.decls) |decl| {
const is_event_handler = switch (@typeInfo(@TypeOf(@field(M, decl.name)))) {
.Fn => true,
.Type => switch (@typeInfo(@field(M, decl.name))) {
.Fn => true,
else => false,
},
else => false,
};
if (is_event_handler) {
const exists_already = blk2: {
for (enum_fields) |existing| if (std.mem.eql(u8, existing.name, decl.name)) break :blk2 true;
break :blk2 false;
};
if (!exists_already) {
enum_fields = enum_fields ++ [_]std.builtin.Type.EnumField{.{ .name = decl.name, .value = i }};
i += 1;
}
}
}
_ = Module(M); // Validate the module
inline for (M.events) |event| {
const Event = @TypeOf(event);
const name_tag = if (@hasField(Event, "global")) event.global else continue;
// Local event handlers
if (@hasDecl(M, "local")) {
for (@typeInfo(M.local).Struct.decls) |decl| {
switch (@typeInfo(@TypeOf(@field(M.local, decl.name)))) {
.Fn => {
const exists_already = blk2: {
for (enum_fields) |existing| if (std.mem.eql(u8, existing.name, decl.name)) break :blk2 true;
break :blk2 false;
};
if (!exists_already) {
enum_fields = enum_fields ++ [_]std.builtin.Type.EnumField{.{ .name = decl.name, .value = i }};
i += 1;
}
},
else => {},
}
const exists_already = blk: {
for (enum_fields) |existing| if (std.mem.eql(u8, existing.name, @tagName(name_tag))) break :blk true;
break :blk false;
};
if (!exists_already) {
enum_fields = enum_fields ++ [_]std.builtin.Type.EnumField{.{ .name = @tagName(name_tag), .value = i }};
i += 1;
}
}
}
return @Type(.{
.Enum = .{
.tag_type = std.math.IntFittingRange(0, enum_fields.len - 1),
.tag_type = if (enum_fields.len > 0) std.math.IntFittingRange(0, enum_fields.len - 1) else u0,
.fields = enum_fields,
.decls = &[_]std.builtin.Type.Declaration{},
.is_exhaustive = true,
@ -468,6 +465,48 @@ fn NamespacedModules(comptime modules: anytype) type {
});
}
fn validateEvents(comptime error_prefix: anytype, comptime events: anytype) void {
if (@typeInfo(@TypeOf(events)) != .Struct or !@typeInfo(@TypeOf(events)).Struct.is_tuple) {
@compileError(error_prefix ++ "expected a tuple of structs, found: " ++ @typeName(@TypeOf(events)));
}
inline for (events, 0..) |event, i| {
const Event = @TypeOf(event);
if (@typeInfo(Event) != .Struct) @compileError(std.fmt.comptimePrint(
error_prefix ++ "expected a tuple of structs, found tuple element ({}): {s}",
.{ i, @typeName(Event) },
));
// Verify .global = .foo, or .local = .foo, event handler name field
const name_tag = if (@hasField(Event, "global")) event.global else if (@hasField(Event, "local")) event.local else @compileError(std.fmt.comptimePrint(
error_prefix ++ "tuple element ({}) missing field `.global = .foo` or `.local = .foo` (event handler kind / name)",
.{i},
));
const is_global = if (@hasField(Event, "global")) true else false;
if (@typeInfo(@TypeOf(name_tag)) != .EnumLiteral) @compileError(std.fmt.comptimePrint(
error_prefix ++ "tuple element ({}) expected field `.{s} = .foo`, found: {s}",
.{ i, if (is_global) "global" else "local", @typeName(@TypeOf(name_tag)) },
));
// Verify .handler = fn, field
if (!@hasField(Event, "handler")) @compileError(std.fmt.comptimePrint(
error_prefix ++ "tuple element ({}) missing field `.handler = fn`",
.{i},
));
const valid_handler_type = switch (@typeInfo(@TypeOf(event.handler))) {
.Fn => true,
.Type => switch (@typeInfo(event.handler)) {
.Fn => true,
else => false,
},
else => false,
};
if (!valid_handler_type) @compileError(std.fmt.comptimePrint(
error_prefix ++ "tuple element ({}) expected field `.handler = fn`, found: {s}",
.{ i, @typeName(@TypeOf(event.handler)) },
));
}
}
test {
testing.refAllDeclsRecursive(@This());
}
@ -486,7 +525,11 @@ test Module {
pub const location = @Vector(3, f32);
};
pub fn tick() !void {}
pub const events = .{
.{ .global = .tick, .handler = tick },
};
fn tick() !void {}
});
}
@ -504,20 +547,28 @@ test Modules {
pub const location = @Vector(3, f32);
};
pub fn tick() !void {}
pub const events = .{
.{ .global = .tick, .handler = tick },
};
fn tick() !void {}
});
const Renderer = Module(struct {
pub const name = .engine_renderer;
pub const events = .{
.{ .global = .tick, .handler = tick },
};
/// Renderer module components
pub const components = struct {};
pub fn tick() !void {}
fn tick() !void {}
});
const Sprite2D = Module(struct {
pub const name = .engine_sprite2d;
pub const events = .{};
});
var modules: Modules(.{
@ -532,39 +583,48 @@ test Modules {
testing.refAllDeclsRecursive(Sprite2D);
}
test EventName {
test "event name" {
const Physics = Module(struct {
pub const name = .engine_physics;
pub const components = struct {};
pub fn foo() !void {}
pub fn bar() !void {}
pub const local = struct {
pub fn baz() !void {}
pub fn bam() !void {}
pub const events = .{
.{ .global = .foo, .handler = foo },
.{ .global = .bar, .handler = bar },
.{ .local = .baz, .handler = baz },
.{ .local = .bam, .handler = bam },
};
fn foo() !void {}
fn bar() !void {}
fn baz() !void {}
fn bam() !void {}
});
const Renderer = Module(struct {
pub const name = .engine_renderer;
pub const components = struct {};
pub const events = .{
.{ .global = .foo_unused, .handler = fn (f32, i32) void },
.{ .global = .bar_unused, .handler = fn (i32, f32) void },
.{ .global = .tick, .handler = tick },
.{ .global = .foo, .handler = foo },
.{ .global = .bar, .handler = bar },
};
pub const fooUnused = fn (f32, i32) void;
pub const barUnused = fn (i32, f32) void;
pub fn tick() !void {}
pub fn foo() !void {} // same .foo name as .engine_physics.foo
pub fn bar() !void {} // same .bar name as .engine_physics.bar
fn tick() !void {}
fn foo() !void {} // same .foo name as .engine_physics.foo
fn bar() !void {} // same .bar name as .engine_physics.bar
});
const Sprite2D = Module(struct {
pub const name = .engine_sprite2d;
pub fn tick() void {} // same .tick as .engine_renderer.tick
pub const local = struct {
pub fn foobar() void {}
pub const events = .{
.{ .global = .tick, .handler = tick },
.{ .global = .foobar, .handler = foobar },
};
fn tick() void {} // same .tick as .engine_renderer.tick
fn foobar() void {}
});
const Mods = Modules(.{
@ -572,38 +632,36 @@ test EventName {
Renderer,
Sprite2D,
});
const info = @typeInfo(EventName(Mods.modules)).Enum;
try testing.expect(type, u3).eql(info.tag_type);
try testing.expect(usize, 8).eql(info.fields.len);
try testing.expect([]const u8, "foo").eql(info.fields[0].name);
try testing.expect([]const u8, "bar").eql(info.fields[1].name);
try testing.expect([]const u8, "baz").eql(info.fields[2].name);
try testing.expect([]const u8, "bam").eql(info.fields[3].name);
try testing.expect([]const u8, "fooUnused").eql(info.fields[4].name);
try testing.expect([]const u8, "barUnused").eql(info.fields[5].name);
try testing.expect([]const u8, "tick").eql(info.fields[6].name);
try testing.expect([]const u8, "foobar").eql(info.fields[7].name);
const locals = @typeInfo(LocalEventEnum(Mods.modules)).Enum;
try testing.expect(type, u1).eql(locals.tag_type);
try testing.expect(usize, 2).eql(locals.fields.len);
try testing.expect([]const u8, "baz").eql(locals.fields[0].name);
try testing.expect([]const u8, "bam").eql(locals.fields[1].name);
const global_info = @typeInfo(GlobalEvent(Mods.modules)).Enum;
try testing.expect(type, u3).eql(global_info.tag_type);
try testing.expect(usize, 5).eql(global_info.fields.len);
try testing.expect([]const u8, "foo").eql(global_info.fields[0].name);
try testing.expect([]const u8, "bar").eql(global_info.fields[1].name);
try testing.expect([]const u8, "fooUnused").eql(global_info.fields[2].name);
try testing.expect([]const u8, "barUnused").eql(global_info.fields[3].name);
try testing.expect([]const u8, "tick").eql(global_info.fields[4].name);
const globals = @typeInfo(GlobalEventEnum(Mods.modules)).Enum;
try testing.expect(type, u3).eql(globals.tag_type);
try testing.expect(usize, 6).eql(globals.fields.len);
try testing.expect([]const u8, "foo").eql(globals.fields[0].name);
try testing.expect([]const u8, "bar").eql(globals.fields[1].name);
try testing.expect([]const u8, "foo_unused").eql(globals.fields[2].name);
try testing.expect([]const u8, "bar_unused").eql(globals.fields[3].name);
try testing.expect([]const u8, "tick").eql(globals.fields[4].name);
try testing.expect([]const u8, "foobar").eql(globals.fields[5].name);
}
test ModuleName {
const Physics = Module(struct {
pub const name = .engine_physics;
pub const events = .{};
});
const Renderer = Module(struct {
pub const name = .engine_renderer;
pub const events = .{};
});
const Sprite2D = Module(struct {
pub const name = .engine_sprite2d;
pub const events = .{};
});
const Mods = Modules(.{
Physics,
@ -742,34 +800,39 @@ test "event name calling" {
const Physics = Module(struct {
pub const name = .engine_physics;
pub const components = struct {};
pub const events = .{
.{ .global = .tick, .handler = tick },
.{ .local = .update, .handler = update },
.{ .local = .calc, .handler = calc },
};
pub fn tick() void {
fn tick() void {
global.ticks += 1;
}
pub const local = struct {
pub fn update() void {
global.physics_updates += 1;
}
fn update() void {
global.physics_updates += 1;
}
pub fn calc() void {
global.physics_calc += 1;
}
};
fn calc() void {
global.physics_calc += 1;
}
});
const Renderer = Module(struct {
pub const name = .engine_renderer;
pub const components = struct {};
pub const events = .{
.{ .global = .tick, .handler = tick },
.{ .local = .update, .handler = update },
};
pub fn tick() void {
fn tick() void {
global.ticks += 1;
}
pub const local = struct {
pub fn update() void {
global.renderer_updates += 1;
}
};
fn update() void {
global.renderer_updates += 1;
}
});
var modules: Modules(.{
@ -779,52 +842,46 @@ test "event name calling" {
try modules.init(testing.allocator);
defer modules.deinit(testing.allocator);
try @TypeOf(modules).call(.tick, &.{}, .{});
try @TypeOf(modules).callGlobal(.tick, &.{}, .{});
try testing.expect(usize, 2).eql(global.ticks);
// Check we can use .call() with a runtime-known event name.
// Check we can use .callGlobal() with a runtime-known event name.
const alloc = try testing.allocator.create(u3);
defer testing.allocator.destroy(alloc);
const E = EventName(@TypeOf(modules).modules);
alloc.* = @intFromEnum(@as(E, .tick));
const GE = GlobalEventEnum(@TypeOf(modules).modules);
const LE = LocalEventEnum(@TypeOf(modules).modules);
alloc.* = @intFromEnum(@as(GE, .tick));
var event_name = @as(E, @enumFromInt(alloc.*));
try @TypeOf(modules).call(event_name, &.{}, .{});
const global_event_name = @as(GE, @enumFromInt(alloc.*));
try @TypeOf(modules).callGlobal(global_event_name, &.{}, .{});
try testing.expect(usize, 4).eql(global.ticks);
// Check call() behavior with a valid event name enum, but not a valid global event handler name
alloc.* = @intFromEnum(@as(E, .update));
event_name = @as(E, @enumFromInt(alloc.*));
try @TypeOf(modules).call(event_name, &.{}, .{});
try testing.expect(usize, 4).eql(global.ticks);
try testing.expect(usize, 0).eql(global.physics_updates);
try testing.expect(usize, 0).eql(global.renderer_updates);
// Check we can use .callLocal() with a runtime-known event and module name.
const m_alloc = try testing.allocator.create(u3);
defer testing.allocator.destroy(m_alloc);
const M = ModuleName(@TypeOf(modules).modules);
m_alloc.* = @intFromEnum(@as(M, .engine_renderer));
alloc.* = @intFromEnum(@as(E, .update));
alloc.* = @intFromEnum(@as(LE, .update));
var module_name = @as(M, @enumFromInt(m_alloc.*));
try @TypeOf(modules).callLocal(module_name, event_name, &.{}, .{});
try @TypeOf(modules).callLocal(module_name, event_name, &.{}, .{});
var local_event_name = @as(LE, @enumFromInt(alloc.*));
try @TypeOf(modules).callLocal(module_name, local_event_name, &.{}, .{});
try @TypeOf(modules).callLocal(module_name, local_event_name, &.{}, .{});
try testing.expect(usize, 4).eql(global.ticks);
try testing.expect(usize, 0).eql(global.physics_updates);
try testing.expect(usize, 2).eql(global.renderer_updates);
m_alloc.* = @intFromEnum(@as(M, .engine_physics));
alloc.* = @intFromEnum(@as(E, .update));
alloc.* = @intFromEnum(@as(LE, .update));
module_name = @as(M, @enumFromInt(m_alloc.*));
event_name = @as(E, @enumFromInt(alloc.*));
try @TypeOf(modules).callLocal(module_name, event_name, &.{}, .{});
local_event_name = @as(LE, @enumFromInt(alloc.*));
try @TypeOf(modules).callLocal(module_name, local_event_name, &.{}, .{});
try testing.expect(usize, 1).eql(global.physics_updates);
m_alloc.* = @intFromEnum(@as(M, .engine_physics));
alloc.* = @intFromEnum(@as(E, .calc));
alloc.* = @intFromEnum(@as(LE, .calc));
module_name = @as(M, @enumFromInt(m_alloc.*));
event_name = @as(E, @enumFromInt(alloc.*));
try @TypeOf(modules).callLocal(module_name, event_name, &.{}, .{});
local_event_name = @as(LE, @enumFromInt(alloc.*));
try @TypeOf(modules).callLocal(module_name, local_event_name, &.{}, .{});
try testing.expect(usize, 4).eql(global.ticks);
try testing.expect(usize, 1).eql(global.physics_calc);
try testing.expect(usize, 1).eql(global.physics_updates);
@ -846,48 +903,57 @@ test "dispatch" {
}{};
const Minimal = Module(struct {
pub const name = .engine_minimal;
pub const events = .{};
});
const Physics = Module(struct {
pub const name = .engine_physics;
pub const components = struct {};
pub const events = .{
.{ .global = .tick, .handler = tick },
.{ .local = .update, .handler = update },
.{ .local = .calc, .handler = calc },
};
pub fn tick() void {
fn tick() void {
global.ticks += 1;
}
pub const local = struct {
pub fn update() void {
global.physics_updates += 1;
}
fn update() void {
global.physics_updates += 1;
}
pub fn calc() void {
global.physics_calc += 1;
}
};
fn calc() void {
global.physics_calc += 1;
}
});
const Renderer = Module(struct {
pub const name = .engine_renderer;
pub const components = struct {};
pub const events = .{
.{ .global = .tick, .handler = tick },
.{ .global = .frame_done, .handler = fn (i32) void },
.{ .local = .update, .handler = update },
.{ .local = .basic_args, .handler = basicArgs },
.{ .local = .injected_args, .handler = injectedArgs },
};
pub const frameDone = fn (i32) void;
pub fn tick() void {
fn tick() void {
global.ticks += 1;
}
pub const local = struct {
pub fn update() void {
global.renderer_updates += 1;
}
fn update() void {
global.renderer_updates += 1;
}
pub fn basicArgs(a: u32, b: u32) void {
global.basic_args_sum = a + b;
}
fn basicArgs(a: u32, b: u32) void {
global.basic_args_sum = a + b;
}
pub fn injectedArgs(foo_ptr: *@TypeOf(foo), a: u32, b: u32) void {
foo_ptr.*.injected_args_sum = a + b;
}
};
fn injectedArgs(foo_ptr: *@TypeOf(foo), a: u32, b: u32) void {
foo_ptr.*.injected_args_sum = a + b;
}
});
var modules: Modules(.{
@ -898,7 +964,8 @@ test "dispatch" {
try modules.init(testing.allocator);
defer modules.deinit(testing.allocator);
const E = EventName(@TypeOf(modules).modules);
const GE = GlobalEventEnum(@TypeOf(modules).modules);
const LE = LocalEventEnum(@TypeOf(modules).modules);
const M = ModuleName(@TypeOf(modules).modules);
// Global events
@ -912,14 +979,14 @@ test "dispatch" {
try modules.dispatch(.{&foo});
try testing.expect(usize, 2).eql(global.ticks);
// TODO: make sendDynamic take an args type to avoid footguns with comptime values, etc.
modules.sendDynamic(@intFromEnum(@as(E, .tick)), .{});
modules.sendDynamic(@intFromEnum(@as(GE, .tick)), .{});
try modules.dispatch(.{&foo});
try testing.expect(usize, 4).eql(global.ticks);
// Global events which are not handled by anyone yet can be written as `pub const fooBar = fn() void;`
// within a module, which allows pre-declaring that `fooBar` is a valid global event, and enables
// its arguments to be inferred still like this:
modules.send(.frameDone, .{1337});
modules.send(.frame_done, .{1337});
// Local events
modules.sendToModule(.engine_renderer, .update, .{});
@ -928,7 +995,7 @@ test "dispatch" {
modules.sendToModule(.engine_physics, .update, .{});
modules.sendToModuleDynamic(
@intFromEnum(@as(M, .engine_physics)),
@intFromEnum(@as(E, .calc)),
@intFromEnum(@as(LE, .calc)),
.{},
);
try modules.dispatch(.{&foo});
@ -936,8 +1003,8 @@ test "dispatch" {
try testing.expect(usize, 1).eql(global.physics_calc);
// Local events
modules.sendToModule(.engine_renderer, .basicArgs, .{ .@"0" = @as(u32, 1), .@"1" = @as(u32, 2) }); // TODO: match arguments against fn ArgsTuple, for correctness and type inference
modules.sendToModule(.engine_renderer, .injectedArgs, .{ .@"0" = @as(u32, 1), .@"1" = @as(u32, 2) });
modules.sendToModule(.engine_renderer, .basic_args, .{ .@"0" = @as(u32, 1), .@"1" = @as(u32, 2) }); // TODO: match arguments against fn ArgsTuple, for correctness and type inference
modules.sendToModule(.engine_renderer, .injected_args, .{ .@"0" = @as(u32, 1), .@"1" = @as(u32, 2) });
try modules.dispatch(.{&foo});
try testing.expect(usize, 3).eql(global.basic_args_sum);
try testing.expect(usize, 3).eql(foo.injected_args_sum);