webgpu: rename to just "gpu"

It's nicer to refer to this in code as `gpu`. Additionally, `webgpu` as a name
gives the impression this is for web only which is absolutely not true but could
understandably be very confusing to newcomers.

Solve both problems by renaming to just `gpu`, and (next) updating the README to
indicate what it does and why, then explain it's WebGPU after as more of an
implementation detail.

Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
This commit is contained in:
Stephen Gutekanst 2021-11-16 21:53:00 -07:00 committed by Stephen Gutekanst
parent ef1827a9a1
commit 484f768c0a
13 changed files with 3 additions and 3 deletions

5
gpu/src/dawn/c.zig Normal file
View file

@ -0,0 +1,5 @@
pub const c = @cImport({
@cInclude("dawn/webgpu.h");
@cInclude("dawn/dawn_proc.h");
@cInclude("dawn_native_c.h");
});

View file

@ -0,0 +1,388 @@
#include <dawn_native/DawnNative.h>
#include <dawn_native/wgpu_structs_autogen.h>
#include "utils/BackendBinding.h"
#include "dawn_native_c.h"
#ifdef __cplusplus
extern "C" {
#endif
// wgpu::AdapterProperties wrappers
MACH_EXPORT void machDawnNativeAdapterProperties_deinit(MachDawnNativeAdapterProperties properties) {
auto self = reinterpret_cast<wgpu::AdapterProperties*>(properties);
delete self;
}
MACH_EXPORT uint32_t machDawnNativeAdapterProperties_getVendorID(MachDawnNativeAdapterProperties properties) {
auto self = reinterpret_cast<wgpu::AdapterProperties*>(properties);
return self->vendorID;
}
MACH_EXPORT uint32_t machDawnNativeAdapterProperties_getDeviceID(MachDawnNativeAdapterProperties properties) {
auto self = reinterpret_cast<wgpu::AdapterProperties*>(properties);
return self->deviceID;
}
MACH_EXPORT char const* machDawnNativeAdapterProperties_getName(MachDawnNativeAdapterProperties properties) {
auto self = reinterpret_cast<wgpu::AdapterProperties*>(properties);
return self->name;
}
MACH_EXPORT char const* machDawnNativeAdapterProperties_getDriverDescription(MachDawnNativeAdapterProperties properties) {
auto self = reinterpret_cast<wgpu::AdapterProperties*>(properties);
return self->driverDescription;
}
MACH_EXPORT WGPUAdapterType machDawnNativeAdapterProperties_getAdapterType(MachDawnNativeAdapterProperties properties) {
auto self = reinterpret_cast<wgpu::AdapterProperties*>(properties);
switch (self->adapterType) {
case wgpu::AdapterType::DiscreteGPU: return WGPUAdapterType_DiscreteGPU;
case wgpu::AdapterType::IntegratedGPU: return WGPUAdapterType_IntegratedGPU;
case wgpu::AdapterType::CPU: return WGPUAdapterType_CPU;
case wgpu::AdapterType::Unknown: return WGPUAdapterType_Unknown;
}
}
MACH_EXPORT WGPUBackendType machDawnNativeAdapterProperties_getBackendType(MachDawnNativeAdapterProperties properties) {
auto self = reinterpret_cast<wgpu::AdapterProperties*>(properties);
switch (self->backendType) {
case wgpu::BackendType::WebGPU: return WGPUBackendType_WebGPU;
case wgpu::BackendType::D3D11: return WGPUBackendType_D3D11;
case wgpu::BackendType::D3D12: return WGPUBackendType_D3D12;
case wgpu::BackendType::Metal: return WGPUBackendType_Metal;
case wgpu::BackendType::Null: return WGPUBackendType_Null;
case wgpu::BackendType::OpenGL: return WGPUBackendType_OpenGL;
case wgpu::BackendType::OpenGLES: return WGPUBackendType_OpenGLES;
case wgpu::BackendType::Vulkan: return WGPUBackendType_Vulkan;
}
}
// dawn_native::Adapter wrappers
MACH_EXPORT MachDawnNativeAdapterProperties machDawnNativeAdapter_getProperties(MachDawnNativeAdapter adapter) {
auto self = reinterpret_cast<dawn_native::Adapter*>(adapter);
auto cppProperties = new wgpu::AdapterProperties();
self->GetProperties(cppProperties);
return reinterpret_cast<MachDawnNativeAdapterProperties>(cppProperties);
}
// TODO(mach-dawn-shims):
// std::vector<const char*> GetSupportedExtensions() const;
// WGPUDeviceProperties GetAdapterProperties() const;
// bool GetLimits(WGPUSupportedLimits* limits) const;
// void SetUseTieredLimits(bool useTieredLimits);
// // Check that the Adapter is able to support importing external images. This is necessary
// // to implement the swapchain and interop APIs in Chromium.
// bool SupportsExternalImages() const;
// explicit operator bool() const;
MACH_EXPORT WGPUDevice machDawnNativeAdapter_createDevice(MachDawnNativeAdapter adapter, MachDawnNativeDeviceDescriptor* deviceDescriptor) {
auto self = reinterpret_cast<dawn_native::Adapter*>(adapter);
if (deviceDescriptor == nullptr) {
return self->CreateDevice(nullptr);
}
std::vector<const char*> cppRequiredExtensions;
for (int i = 0; i < deviceDescriptor->requiredExtensionsLength; i++)
cppRequiredExtensions.push_back(deviceDescriptor->requiredExtensions[i]);
std::vector<const char*> cppForceEnabledToggles;
for (int i = 0; i < deviceDescriptor->forceEnabledTogglesLength; i++)
cppForceEnabledToggles.push_back(deviceDescriptor->forceEnabledToggles[i]);
std::vector<const char*> cppForceDisabledToggles;
for (int i = 0; i < deviceDescriptor->forceDisabledTogglesLength; i++)
cppForceDisabledToggles.push_back(deviceDescriptor->forceDisabledToggles[i]);
auto cppDeviceDescriptor = dawn_native::DeviceDescriptor{
.requiredExtensions = cppRequiredExtensions,
.forceEnabledToggles = cppForceEnabledToggles,
.forceDisabledToggles = cppForceDisabledToggles,
.requiredLimits = deviceDescriptor->requiredLimits,
};
return self->CreateDevice(&cppDeviceDescriptor);
}
// TODO(mach-dawn-shims):
// // An optional parameter of Adapter::CreateDevice() to send additional information when creating
// // a Device. For example, we can use it to enable a workaround, optimization or feature.
// struct DAWN_NATIVE_EXPORT DeviceDescriptor {
// std::vector<const char*> requiredExtensions;
// std::vector<const char*> forceEnabledToggles;
// std::vector<const char*> forceDisabledToggles;
// const WGPURequiredLimits* requiredLimits = nullptr;
// };
// TODO(mach-dawn-shims):
// // Create a device on this adapter, note that the interface will change to include at least
// // a device descriptor and a pointer to backend specific options.
// // On an error, nullptr is returned.
// WGPUDevice CreateDevice(const DeviceDescriptor* deviceDescriptor = nullptr);
// TODO(mach-dawn-shims):
// void RequestDevice(const DeviceDescriptor* descriptor,
// WGPURequestDeviceCallback callback,
// void* userdata);
// TODO(mach-dawn-shims):
// // Reset the backend device object for testing purposes.
// void ResetInternalDeviceForTesting();
// std::vector<Adapter> wrapper
typedef struct MachDawnNativeAdaptersImpl* MachDawnNativeAdapters;
MACH_EXPORT MachDawnNativeAdapter machDawnNativeAdapters_index(MachDawnNativeAdapters adapters, uintptr_t index) {
auto self = reinterpret_cast<std::vector<dawn_native::Adapter>*>(adapters);
return reinterpret_cast<MachDawnNativeAdapter>(&(*self)[index]);
}
MACH_EXPORT uintptr_t machDawnNativeAdapters_length(MachDawnNativeAdapters adapters) {
auto self = reinterpret_cast<std::vector<dawn_native::Adapter>*>(adapters);
return self->size();
};
// dawn_native::Instance wrappers
MACH_EXPORT MachDawnNativeInstance machDawnNativeInstance_init(void) {
return reinterpret_cast<MachDawnNativeInstance>(new dawn_native::Instance());
}
MACH_EXPORT void machDawnNativeInstance_deinit(MachDawnNativeInstance instance) {
delete reinterpret_cast<dawn_native::Instance*>(instance);
}
MACH_EXPORT void machDawnNativeInstance_discoverDefaultAdapters(MachDawnNativeInstance instance) {
dawn_native::Instance* self = reinterpret_cast<dawn_native::Instance*>(instance);
self->DiscoverDefaultAdapters();
}
// TODO(mach-dawn-shims):
// // Adds adapters that can be discovered with the options provided (like a getProcAddress).
// // The backend is chosen based on the type of the options used. Returns true on success.
// bool DiscoverAdapters(const AdapterDiscoveryOptionsBase* options);
MACH_EXPORT MachDawnNativeAdapters machDawnNativeInstance_getAdapters(MachDawnNativeInstance instance) {
dawn_native::Instance* self = reinterpret_cast<dawn_native::Instance*>(instance);
auto cppAdapters = self->GetAdapters();
auto heapAllocated = new std::vector<dawn_native::Adapter>();
for (int i=0; i<cppAdapters.size(); i++) heapAllocated->push_back(cppAdapters[i]);
return reinterpret_cast<MachDawnNativeAdapters>(heapAllocated);
}
MACH_EXPORT const DawnProcTable* machDawnNativeGetProcs() {
return &dawn_native::GetProcs();
}
// TODO(mach-dawn-shims):
// const ToggleInfo* GetToggleInfo(const char* toggleName);
// TODO(mach-dawn-shims):
// // Enables backend validation layers
// void EnableBackendValidation(bool enableBackendValidation);
// void SetBackendValidationLevel(BackendValidationLevel validationLevel);
// TODO(mach-dawn-shims):
// // Enable debug capture on Dawn startup
// void EnableBeginCaptureOnStartup(bool beginCaptureOnStartup);
// TODO(mach-dawn-shims):
// void SetPlatform(dawn_platform::Platform* platform);
// TODO(mach-dawn-shims):
// // Returns the underlying WGPUInstance object.
// WGPUInstance Get() const;
// typedef struct MachUtilsBackendBindingImpl* MachUtilsBackendBinding;
#include <stdio.h>
MACH_EXPORT MachUtilsBackendBinding machUtilsCreateBinding(WGPUBackendType backendType, GLFWwindow* window, WGPUDevice device) {
wgpu::BackendType cppBackendType;
printf("here with backendType=%d, expecting %d\n", backendType, WGPUBackendType_Metal);
switch (backendType) {
case WGPUBackendType_WebGPU:
cppBackendType = wgpu::BackendType::WebGPU;
break;
case WGPUBackendType_D3D11:
cppBackendType = wgpu::BackendType::D3D11;
break;
case WGPUBackendType_D3D12:
cppBackendType = wgpu::BackendType::D3D12;
break;
case WGPUBackendType_Metal:
cppBackendType = wgpu::BackendType::Metal;
break;
case WGPUBackendType_Null:
cppBackendType = wgpu::BackendType::Null;
break;
case WGPUBackendType_OpenGL:
cppBackendType = wgpu::BackendType::OpenGL;
break;
case WGPUBackendType_OpenGLES:
cppBackendType = wgpu::BackendType::OpenGLES;
break;
case WGPUBackendType_Vulkan:
cppBackendType = wgpu::BackendType::Vulkan;
break;
case WGPUBackendType_Force32:
// TODO: what would this indicate?
cppBackendType = wgpu::BackendType::Null;
break;
}
printf("created cppBackendType=%d, expected %d\n", cppBackendType, wgpu::BackendType::Metal);
return reinterpret_cast<MachUtilsBackendBinding>(utils::CreateBinding(cppBackendType, window, device));
}
MACH_EXPORT uint64_t machUtilsBackendBinding_getSwapChainImplementation(MachUtilsBackendBinding binding) {
auto self = reinterpret_cast<utils::BackendBinding*>(binding);
return self->GetSwapChainImplementation();
}
MACH_EXPORT WGPUTextureFormat machUtilsBackendBinding_getPreferredSwapChainTextureFormat(MachUtilsBackendBinding binding) {
auto self = reinterpret_cast<utils::BackendBinding*>(binding);
return self->GetPreferredSwapChainTextureFormat();
}
#ifdef __cplusplus
} // extern "C"
#endif
// TODO(mach-dawn-shims): everything below here is not wrapped
// #ifndef DAWNNATIVE_DAWNNATIVE_H_
// #define DAWNNATIVE_DAWNNATIVE_H_
// #include <dawn/dawn_proc_table.h>
// #include <dawn/webgpu.h>
// #include <dawn_native/dawn_native_export.h>
// #include <string>
// #include <vector>
// namespace dawn_platform {
// class Platform;
// } // namespace dawn_platform
// namespace wgpu {
// struct AdapterProperties;
// }
// namespace dawn_native {
// // DEPRECATED: use WGPUAdapterProperties instead.
// struct PCIInfo {
// uint32_t deviceId = 0;
// uint32_t vendorId = 0;
// std::string name;
// };
// // DEPRECATED: use WGPUBackendType instead.
// enum class BackendType {
// D3D12,
// Metal,
// Null,
// OpenGL,
// OpenGLES,
// Vulkan,
// };
// // DEPRECATED: use WGPUAdapterType instead.
// enum class DeviceType {
// DiscreteGPU,
// IntegratedGPU,
// CPU,
// Unknown,
// };
// class InstanceBase;
// class AdapterBase;
// // A struct to record the information of a toggle. A toggle is a code path in Dawn device that
// // can be manually configured to run or not outside Dawn, including workarounds, special
// // features and optimizations.
// struct ToggleInfo {
// const char* name;
// const char* description;
// const char* url;
// };
// // A struct to record the information of an extension. An extension is a GPU feature that is not
// // required to be supported by all Dawn backends and can only be used when it is enabled on the
// // creation of device.
// using ExtensionInfo = ToggleInfo;
// // Base class for options passed to Instance::DiscoverAdapters.
// struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptionsBase {
// public:
// const WGPUBackendType backendType;
// protected:
// AdapterDiscoveryOptionsBase(WGPUBackendType type);
// };
// enum BackendValidationLevel { Full, Partial, Disabled };
// class DAWN_NATIVE_EXPORT Instance {
// };
// // Query the names of all the toggles that are enabled in device
// DAWN_NATIVE_EXPORT std::vector<const char*> GetTogglesUsed(WGPUDevice device);
// // Backdoor to get the number of lazy clears for testing
// DAWN_NATIVE_EXPORT size_t GetLazyClearCountForTesting(WGPUDevice device);
// // Backdoor to get the number of deprecation warnings for testing
// DAWN_NATIVE_EXPORT size_t GetDeprecationWarningCountForTesting(WGPUDevice device);
// // Query if texture has been initialized
// DAWN_NATIVE_EXPORT bool IsTextureSubresourceInitialized(
// WGPUTexture texture,
// uint32_t baseMipLevel,
// uint32_t levelCount,
// uint32_t baseArrayLayer,
// uint32_t layerCount,
// WGPUTextureAspect aspect = WGPUTextureAspect_All);
// // Backdoor to get the order of the ProcMap for testing
// DAWN_NATIVE_EXPORT std::vector<const char*> GetProcMapNamesForTesting();
// DAWN_NATIVE_EXPORT bool DeviceTick(WGPUDevice device);
// // ErrorInjector functions used for testing only. Defined in dawn_native/ErrorInjector.cpp
// DAWN_NATIVE_EXPORT void EnableErrorInjector();
// DAWN_NATIVE_EXPORT void DisableErrorInjector();
// DAWN_NATIVE_EXPORT void ClearErrorInjector();
// DAWN_NATIVE_EXPORT uint64_t AcquireErrorInjectorCallCount();
// DAWN_NATIVE_EXPORT void InjectErrorAt(uint64_t index);
// // The different types of external images
// enum ExternalImageType {
// OpaqueFD,
// DmaBuf,
// IOSurface,
// DXGISharedHandle,
// EGLImage,
// };
// // Common properties of external images
// struct DAWN_NATIVE_EXPORT ExternalImageDescriptor {
// public:
// const ExternalImageType type;
// const WGPUTextureDescriptor* cTextureDescriptor; // Must match image creation params
// bool isInitialized; // Whether the texture is initialized on import
// protected:
// ExternalImageDescriptor(ExternalImageType type);
// };
// struct DAWN_NATIVE_EXPORT ExternalImageAccessDescriptor {
// public:
// bool isInitialized; // Whether the texture is initialized on import
// WGPUTextureUsageFlags usage;
// };
// struct DAWN_NATIVE_EXPORT ExternalImageExportInfo {
// public:
// const ExternalImageType type;
// bool isInitialized; // Whether the texture is initialized after export
// protected:
// ExternalImageExportInfo(ExternalImageType type);
// };
// DAWN_NATIVE_EXPORT const char* GetObjectLabelForTesting(void* objectHandle);
// DAWN_NATIVE_EXPORT uint64_t GetAllocatedSizeForTesting(WGPUBuffer buffer);
// DAWN_NATIVE_EXPORT bool BindGroupLayoutBindingsEqualForTesting(WGPUBindGroupLayout a,
// WGPUBindGroupLayout b);
// } // namespace dawn_native
// #endif // DAWNNATIVE_DAWNNATIVE_H_

View file

@ -0,0 +1,102 @@
#ifndef MACH_DAWNNATIVE_C_H_
#define MACH_DAWNNATIVE_C_H_
#ifdef __cplusplus
extern "C" {
#endif
#if defined(MACH_DAWNNATIVE_C_SHARED_LIBRARY)
# if defined(_WIN32)
# if defined(MACH_DAWNNATIVE_C_IMPLEMENTATION)
# define MACH_EXPORT __declspec(dllexport)
# else
# define MACH_EXPORT __declspec(dllimport)
# endif
# else // defined(_WIN32)
# if defined(MACH_DAWNNATIVE_C_IMPLEMENTATION)
# define MACH_EXPORT __attribute__((visibility("default")))
# else
# define MACH_EXPORT
# endif
# endif // defined(_WIN32)
#else // defined(MACH_DAWNNATIVE_C_SHARED_LIBRARY)
# define MACH_EXPORT
#endif // defined(MACH_DAWNNATIVE_C_SHARED_LIBRARY)
#include <dawn/webgpu.h>
#include <dawn/dawn_proc_table.h>
// TODO(slimsag): future: Dawn authors want dawn_native::AdapterProperties to eventually be in webgpu.h,
// and there is a corresponding WGPUAdapterProperties struct today, but there aren't corresponding methods
// to actually use / work with it today.
typedef struct MachDawnNativeAdapterPropertiesImpl* MachDawnNativeAdapterProperties;
MACH_EXPORT void machDawnNativeAdapterProperties_deinit(MachDawnNativeAdapterProperties properties);
MACH_EXPORT uint32_t machDawnNativeAdapterProperties_getVendorID(MachDawnNativeAdapterProperties properties);
MACH_EXPORT uint32_t machDawnNativeAdapterProperties_getDeviceID(MachDawnNativeAdapterProperties properties);
MACH_EXPORT char const* machDawnNativeAdapterProperties_getName(MachDawnNativeAdapterProperties properties);
MACH_EXPORT char const* machDawnNativeAdapterProperties_getDriverDescription(MachDawnNativeAdapterProperties properties);
MACH_EXPORT WGPUAdapterType machDawnNativeAdapterProperties_getAdapterType(MachDawnNativeAdapterProperties properties);
MACH_EXPORT WGPUBackendType machDawnNativeAdapterProperties_getBackendType(MachDawnNativeAdapterProperties properties);
// An adapter is an object that represent on possibility of creating devices in the system.
// Most of the time it will represent a combination of a physical GPU and an API. Not that the
// same GPU can be represented by multiple adapters but on different APIs.
//
// The underlying Dawn adapter is owned by the Dawn instance so this is just a reference to an
// underlying adapter.
typedef struct MachDawnNativeAdapterImpl* MachDawnNativeAdapter;
MACH_EXPORT MachDawnNativeAdapterProperties machDawnNativeAdapter_getProperties(MachDawnNativeAdapter adapter);
// An optional parameter of Adapter::CreateDevice() to send additional information when creating
// a Device. For example, we can use it to enable a workaround, optimization or feature.
typedef struct MachDawnNativeDeviceDescriptor {
char** requiredExtensions;
uintptr_t requiredExtensionsLength;
char** forceEnabledToggles;
uintptr_t forceEnabledTogglesLength;
char** forceDisabledToggles;
uintptr_t forceDisabledTogglesLength;
// default null
WGPURequiredLimits* requiredLimits;
} MachDawnNativeDeviceDescriptor;
MACH_EXPORT WGPUDevice machDawnNativeAdapter_createDevice(MachDawnNativeAdapter adapter, MachDawnNativeDeviceDescriptor* deviceDescriptor);
typedef struct MachDawnNativeAdaptersImpl* MachDawnNativeAdapters;
MACH_EXPORT MachDawnNativeAdapter machDawnNativeAdapters_index(MachDawnNativeAdapters adapters, uintptr_t index);
MACH_EXPORT uintptr_t machDawnNativeAdapters_length(MachDawnNativeAdapters adapters);
// Represents a connection to dawn_native and is used for dependency injection, discovering
// system adapters and injecting custom adapters (like a Swiftshader Vulkan adapter).
//
// This can be initialized via machDawnNativeInstanceInit and destroyed via
// machDawnNativeInstanceDeinit. The instance controls the lifetime of all adapters for the
// instance.
typedef struct MachDawnNativeInstanceImpl* MachDawnNativeInstance;
MACH_EXPORT MachDawnNativeInstance machDawnNativeInstance_init(void);
MACH_EXPORT void machDawnNativeInstance_deinit(MachDawnNativeInstance);
MACH_EXPORT void machDawnNativeInstance_discoverDefaultAdapters(MachDawnNativeInstance);
MACH_EXPORT MachDawnNativeAdapters machDawnNativeInstance_getAdapters(MachDawnNativeInstance instance);
// Backend-agnostic API for dawn_native
MACH_EXPORT const DawnProcTable* machDawnNativeGetProcs();
// utils
#include <GLFW/glfw3.h>
typedef struct MachUtilsBackendBindingImpl* MachUtilsBackendBinding;
MACH_EXPORT MachUtilsBackendBinding machUtilsCreateBinding(WGPUBackendType backendType, GLFWwindow* window, WGPUDevice device);
MACH_EXPORT uint64_t machUtilsBackendBinding_getSwapChainImplementation(MachUtilsBackendBinding binding);
MACH_EXPORT WGPUTextureFormat machUtilsBackendBinding_getPreferredSwapChainTextureFormat(MachUtilsBackendBinding binding);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // MACH_DAWNNATIVE_C_H_

0
gpu/src/dawn/dummy.zig Normal file
View file

View file

@ -0,0 +1,164 @@
const std = @import("std");
const sample_utils = @import("sample_utils.zig");
const c = @import("c.zig").c;
const glfw = @import("glfw");
// #include "utils/SystemUtils.h"
// #include "utils/WGPUHelpers.h"
// WGPUSwapChain swapchain;
// WGPURenderPipeline pipeline;
// WGPUTextureFormat swapChainFormat;
pub fn main() !void {
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
var allocator = &gpa.allocator;
const setup = try sample_utils.setup();
const queue = c.wgpuDeviceGetQueue(setup.device);
var descriptor = std.mem.zeroes(c.WGPUSwapChainDescriptor);
descriptor.implementation = c.machUtilsBackendBinding_getSwapChainImplementation(setup.binding);
const swap_chain = c.wgpuDeviceCreateSwapChain(setup.device, null, &descriptor);
const swap_chain_format = c.machUtilsBackendBinding_getPreferredSwapChainTextureFormat(setup.binding);
c.wgpuSwapChainConfigure(swap_chain, swap_chain_format, c.WGPUTextureUsage_RenderAttachment, 640, 480);
const vs =
\\ [[stage(vertex)]] fn main(
\\ [[builtin(vertex_index)]] VertexIndex : u32
\\ ) -> [[builtin(position)]] vec4<f32> {
\\ var pos = array<vec2<f32>, 3>(
\\ vec2<f32>( 0.0, 0.5),
\\ vec2<f32>(-0.5, -0.5),
\\ vec2<f32>( 0.5, -0.5)
\\ );
\\ return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
\\ }
;
var vs_wgsl_descriptor = try allocator.create(c.WGPUShaderModuleWGSLDescriptor);
vs_wgsl_descriptor.chain.next = null;
vs_wgsl_descriptor.chain.sType = c.WGPUSType_ShaderModuleWGSLDescriptor;
vs_wgsl_descriptor.source = vs;
const vs_shader_descriptor = c.WGPUShaderModuleDescriptor{
.nextInChain = @ptrCast(*const c.WGPUChainedStruct, vs_wgsl_descriptor),
.label = "my vertex shader",
};
const vs_module = c.wgpuDeviceCreateShaderModule(setup.device, &vs_shader_descriptor);
const fs =
\\ [[stage(fragment)]] fn main() -> [[location(0)]] vec4<f32> {
\\ return vec4<f32>(1.0, 0.0, 0.0, 1.0);
\\ }
;
var fs_wgsl_descriptor = try allocator.create(c.WGPUShaderModuleWGSLDescriptor);
fs_wgsl_descriptor.chain.next = null;
fs_wgsl_descriptor.chain.sType = c.WGPUSType_ShaderModuleWGSLDescriptor;
fs_wgsl_descriptor.source = fs;
const fs_shader_descriptor = c.WGPUShaderModuleDescriptor{
.nextInChain = @ptrCast(*const c.WGPUChainedStruct, fs_wgsl_descriptor),
.label = "my fragment shader",
};
const fs_module = c.wgpuDeviceCreateShaderModule(setup.device, &fs_shader_descriptor);
// Fragment state
var blend = std.mem.zeroes(c.WGPUBlendState);
blend.color.operation = c.WGPUBlendOperation_Add;
blend.color.srcFactor = c.WGPUBlendFactor_One;
blend.color.dstFactor = c.WGPUBlendFactor_One;
blend.alpha.operation = c.WGPUBlendOperation_Add;
blend.alpha.srcFactor = c.WGPUBlendFactor_One;
blend.alpha.dstFactor = c.WGPUBlendFactor_One;
var color_target = std.mem.zeroes(c.WGPUColorTargetState);
color_target.format = swap_chain_format;
color_target.blend = &blend;
color_target.writeMask = c.WGPUColorWriteMask_All;
var fragment = std.mem.zeroes(c.WGPUFragmentState);
fragment.module = fs_module;
fragment.entryPoint = "main";
fragment.targetCount = 1;
fragment.targets = &color_target;
var pipeline_descriptor = std.mem.zeroes(c.WGPURenderPipelineDescriptor);
pipeline_descriptor.fragment = &fragment;
// Other state
pipeline_descriptor.layout = null;
pipeline_descriptor.depthStencil = null;
pipeline_descriptor.vertex.module = vs_module;
pipeline_descriptor.vertex.entryPoint = "main";
pipeline_descriptor.vertex.bufferCount = 0;
pipeline_descriptor.vertex.buffers = null;
pipeline_descriptor.multisample.count = 1;
pipeline_descriptor.multisample.mask = 0xFFFFFFFF;
pipeline_descriptor.multisample.alphaToCoverageEnabled = false;
pipeline_descriptor.primitive.frontFace = c.WGPUFrontFace_CCW;
pipeline_descriptor.primitive.cullMode = c.WGPUCullMode_None;
pipeline_descriptor.primitive.topology = c.WGPUPrimitiveTopology_TriangleList;
pipeline_descriptor.primitive.stripIndexFormat = c.WGPUIndexFormat_Undefined;
const pipeline = c.wgpuDeviceCreateRenderPipeline(setup.device, &pipeline_descriptor);
c.wgpuShaderModuleRelease(vs_module);
c.wgpuShaderModuleRelease(fs_module);
while (!setup.window.shouldClose()) {
try frame(.{
.device = setup.device,
.swap_chain = swap_chain,
.pipeline = pipeline,
.queue = queue,
});
std.time.sleep(16000);
}
}
const FrameParams = struct {
device: c.WGPUDevice,
swap_chain: c.WGPUSwapChain,
pipeline: c.WGPURenderPipeline,
queue: c.WGPUQueue,
};
fn frame(params: FrameParams) !void {
const back_buffer_view = c.wgpuSwapChainGetCurrentTextureView(params.swap_chain);
var render_pass_info = std.mem.zeroes(c.WGPURenderPassDescriptor);
var color_attachment = std.mem.zeroes(c.WGPURenderPassColorAttachment);
color_attachment.view = back_buffer_view;
color_attachment.resolveTarget = null;
color_attachment.clearColor = c.WGPUColor{ .r = 0.0, .g = 0.0, .b = 0.0, .a = 0.0 };
color_attachment.loadOp = c.WGPULoadOp_Clear;
color_attachment.storeOp = c.WGPUStoreOp_Store;
render_pass_info.colorAttachmentCount = 1;
render_pass_info.colorAttachments = &color_attachment;
render_pass_info.depthStencilAttachment = null;
const encoder = c.wgpuDeviceCreateCommandEncoder(params.device, null);
const pass = c.wgpuCommandEncoderBeginRenderPass(encoder, &render_pass_info);
c.wgpuRenderPassEncoderSetPipeline(pass, params.pipeline);
c.wgpuRenderPassEncoderDraw(pass, 3, 1, 0, 0);
c.wgpuRenderPassEncoderEndPass(pass);
c.wgpuRenderPassEncoderRelease(pass);
const commands = c.wgpuCommandEncoderFinish(encoder, null);
c.wgpuCommandEncoderRelease(encoder);
c.wgpuQueueSubmit(params.queue, 1, &commands);
c.wgpuCommandBufferRelease(commands);
c.wgpuSwapChainPresent(params.swap_chain);
c.wgpuTextureViewRelease(back_buffer_view);
// if (cmdBufType == CmdBufType::Terrible) {
// bool c2sSuccess = c2sBuf->Flush();
// bool s2cSuccess = s2cBuf->Flush();
// ASSERT(c2sSuccess && s2cSuccess);
// }
try glfw.pollEvents();
}

View file

@ -0,0 +1,264 @@
const std = @import("std");
const assert = std.debug.assert;
const glfw = @import("glfw");
const c = @import("c.zig").c;
// #include "SampleUtils.h"
// #include "common/Assert.h"
// #include "common/Log.h"
// #include "common/Platform.h"
// #include "common/SystemUtils.h"
// #include "utils/BackendBinding.h"
// #include "utils/GLFWUtils.h"
// #include "utils/TerribleCommandBuffer.h"
// #include <dawn/dawn_proc.h>
// #include <dawn/dawn_wsi.h>
// #include <dawn_native/DawnNative.h>
// #include <dawn_wire/WireClient.h>
// #include <dawn_wire/WireServer.h>
// #include "GLFW/glfw3.h"
// #include <algorithm>
// #include <cstring>
fn printDeviceError(error_type: c.WGPUErrorType, message: [*c]const u8, _: ?*c_void) callconv(.C) void {
switch (error_type) {
c.WGPUErrorType_Validation => std.debug.print("dawn: validation error: {s}\n", .{message}),
c.WGPUErrorType_OutOfMemory => std.debug.print("dawn: out of memory: {s}\n", .{message}),
c.WGPUErrorType_Unknown => std.debug.print("dawn: unknown error: {s}\n", .{message}),
c.WGPUErrorType_DeviceLost => std.debug.print("dawn: device lost: {s}\n", .{message}),
else => unreachable,
}
}
// // Default to D3D12, Metal, Vulkan, OpenGL in that order as D3D12 and Metal are the preferred on
// // their respective platforms, and Vulkan is preferred to OpenGL
// #if defined(DAWN_ENABLE_BACKEND_D3D12)
// static wgpu::BackendType backendType = wgpu::BackendType::D3D12;
// #elif defined(DAWN_ENABLE_BACKEND_METAL)
// static wgpu::BackendType backendType = wgpu::BackendType::Metal;
// #elif defined(DAWN_ENABLE_BACKEND_VULKAN)
// static wgpu::BackendType backendType = wgpu::BackendType::Vulkan;
// #elif defined(DAWN_ENABLE_BACKEND_OPENGLES)
// static wgpu::BackendType backendType = wgpu::BackendType::OpenGLES;
// #elif defined(DAWN_ENABLE_BACKEND_DESKTOP_GL)
// static wgpu::BackendType backendType = wgpu::BackendType::OpenGL;
// #else
// # error
// #endif
const CmdBufType = enum { none, terrible };
// static std::unique_ptr<dawn_native::Instance> instance;
// static utils::BackendBinding* binding = nullptr;
// static GLFWwindow* window = nullptr;
// static dawn_wire::WireServer* wireServer = nullptr;
// static dawn_wire::WireClient* wireClient = nullptr;
// static utils::TerribleCommandBuffer* c2sBuf = nullptr;
// static utils::TerribleCommandBuffer* s2cBuf = nullptr;
const Setup = struct {
device: c.WGPUDevice,
binding: c.MachUtilsBackendBinding,
window: glfw.Window,
};
pub fn setup() !Setup {
const backend_type = c.WGPUBackendType_Metal;
const cmd_buf_type = CmdBufType.none;
try glfw.init(.{});
// Create the test window and discover adapters using it (esp. for OpenGL)
var hints = glfwWindowHintsForBackend(backend_type);
hints.cocoa_retina_framebuffer = false;
const window = try glfw.Window.create(640, 480, "Dawn window", null, null, hints);
const instance = c.machDawnNativeInstance_init();
try discoverAdapter(instance, window, backend_type);
const adapters = c.machDawnNativeInstance_getAdapters(instance);
var backend_adapter: ?c.MachDawnNativeAdapter = null;
var i: usize = 0;
while (i < c.machDawnNativeAdapters_length(adapters)) : (i += 1) {
const adapter = c.machDawnNativeAdapters_index(adapters, i);
const properties = c.machDawnNativeAdapter_getProperties(adapter);
if (c.machDawnNativeAdapterProperties_getBackendType(properties) == backend_type) {
backend_adapter = adapter;
}
}
assert(backend_adapter != null);
const backend_device = c.machDawnNativeAdapter_createDevice(backend_adapter.?, null);
const backend_procs = c.machDawnNativeGetProcs();
const binding = c.machUtilsCreateBinding(backend_type, @ptrCast(*c.GLFWwindow, window.handle), backend_device);
if (binding == null) {
@panic("failed to create binding");
}
// Choose whether to use the backend procs and devices directly, or set up the wire.
var procs: ?*const c.DawnProcTable = null;
var c_device: ?c.WGPUDevice = null;
switch (cmd_buf_type) {
CmdBufType.none => {
procs = backend_procs;
c_device = backend_device;
},
CmdBufType.terrible => {
// TODO(slimsag):
@panic("not implemented");
// c2sBuf = new utils::TerribleCommandBuffer();
// s2cBuf = new utils::TerribleCommandBuffer();
// dawn_wire::WireServerDescriptor serverDesc = {};
// serverDesc.procs = &backendProcs;
// serverDesc.serializer = s2cBuf;
// wireServer = new dawn_wire::WireServer(serverDesc);
// c2sBuf->SetHandler(wireServer);
// dawn_wire::WireClientDescriptor clientDesc = {};
// clientDesc.serializer = c2sBuf;
// wireClient = new dawn_wire::WireClient(clientDesc);
// procs = dawn_wire::client::GetProcs();
// s2cBuf->SetHandler(wireClient);
// auto deviceReservation = wireClient->ReserveDevice();
// wireServer->InjectDevice(backendDevice, deviceReservation.id,
// deviceReservation.generation);
// cDevice = deviceReservation.device;
},
}
c.dawnProcSetProcs(procs.?);
procs.?.deviceSetUncapturedErrorCallback.?(c_device.?, printDeviceError, null);
return Setup{
.device = c_device.?,
.binding = binding,
.window = window,
};
}
fn glfwWindowHintsForBackend(backend: c.WGPUBackendType) glfw.Window.Hints {
return switch (backend) {
c.WGPUBackendType_OpenGL => .{
// Ask for OpenGL 4.4 which is what the GL backend requires for compute shaders and
// texture views.
.context_version_major = 4,
.context_version_minor = 4,
.opengl_forward_compat = true,
.opengl_profile = .opengl_core_profile,
},
c.WGPUBackendType_OpenGLES => .{
.context_version_major = 3,
.context_version_minor = 1,
.client_api = .opengl_es_api,
.context_creation_api = .egl_context_api,
},
else => .{
// Without this GLFW will initialize a GL context on the window, which prevents using
// the window with other APIs (by crashing in weird ways).
.client_api = .no_api,
},
};
}
fn discoverAdapter(instance: c.MachDawnNativeInstance, window: glfw.Window, typ: c.WGPUBackendType) !void {
if (typ == c.WGPUBackendType_OpenGL or typ == c.WGPUBackendType_OpenGLES) {
try glfw.makeContextCurrent(window);
// auto getProc = reinterpret_cast<void* (*)(const char*)>(glfwGetProcAddress);
// if (type == wgpu::BackendType::OpenGL) {
// dawn_native::opengl::AdapterDiscoveryOptions adapterOptions;
// adapterOptions.getProc = getProc;
// instance->DiscoverAdapters(&adapterOptions);
// } else {
// dawn_native::opengl::AdapterDiscoveryOptionsES adapterOptions;
// adapterOptions.getProc = getProc;
// instance->DiscoverAdapters(&adapterOptions);
// }
} else {
c.machDawnNativeInstance_discoverDefaultAdapters(instance);
}
}
// wgpu::TextureFormat GetPreferredSwapChainTextureFormat() {
// DoFlush();
// return static_cast<wgpu::TextureFormat>(binding->GetPreferredSwapChainTextureFormat());
// }
// wgpu::TextureView CreateDefaultDepthStencilView(const wgpu::Device& device) {
// wgpu::TextureDescriptor descriptor;
// descriptor.dimension = wgpu::TextureDimension::e2D;
// descriptor.size.width = 640;
// descriptor.size.height = 480;
// descriptor.size.depthOrArrayLayers = 1;
// descriptor.sampleCount = 1;
// descriptor.format = wgpu::TextureFormat::Depth24PlusStencil8;
// descriptor.mipLevelCount = 1;
// descriptor.usage = wgpu::TextureUsage::RenderAttachment;
// auto depthStencilTexture = device.CreateTexture(&descriptor);
// return depthStencilTexture.CreateView();
// }
// bool InitSample(int argc, const char** argv) {
// for (int i = 1; i < argc; i++) {
// if (std::string("-b") == argv[i] || std::string("--backend") == argv[i]) {
// i++;
// if (i < argc && std::string("d3d12") == argv[i]) {
// backendType = wgpu::BackendType::D3D12;
// continue;
// }
// if (i < argc && std::string("metal") == argv[i]) {
// backendType = wgpu::BackendType::Metal;
// continue;
// }
// if (i < argc && std::string("null") == argv[i]) {
// backendType = wgpu::BackendType::Null;
// continue;
// }
// if (i < argc && std::string("opengl") == argv[i]) {
// backendType = wgpu::BackendType::OpenGL;
// continue;
// }
// if (i < argc && std::string("opengles") == argv[i]) {
// backendType = wgpu::BackendType::OpenGLES;
// continue;
// }
// if (i < argc && std::string("vulkan") == argv[i]) {
// backendType = wgpu::BackendType::Vulkan;
// continue;
// }
// fprintf(stderr,
// "--backend expects a backend name (opengl, opengles, metal, d3d12, null, "
// "vulkan)\n");
// return false;
// }
// if (std::string("-c") == argv[i] || std::string("--command-buffer") == argv[i]) {
// i++;
// if (i < argc && std::string("none") == argv[i]) {
// cmdBufType = CmdBufType::None;
// continue;
// }
// if (i < argc && std::string("terrible") == argv[i]) {
// cmdBufType = CmdBufType::Terrible;
// continue;
// }
// fprintf(stderr, "--command-buffer expects a command buffer name (none, terrible)\n");
// return false;
// }
// if (std::string("-h") == argv[i] || std::string("--help") == argv[i]) {
// printf("Usage: %s [-b BACKEND] [-c COMMAND_BUFFER]\n", argv[0]);
// printf(" BACKEND is one of: d3d12, metal, null, opengl, opengles, vulkan\n");
// printf(" COMMAND_BUFFER is one of: none, terrible\n");
// return false;
// }
// }
// return true;
// }

10
gpu/src/main.zig Normal file
View file

@ -0,0 +1,10 @@
const std = @import("std");
const testing = std.testing;
export fn add(a: i32, b: i32) i32 {
return a + b;
}
test "basic add functionality" {
try testing.expect(add(3, 7) == 10);
}