Updates to math.collision

* Added function to compute contacts between polygons and circles.
* Added documentation for existing functions.
* Fixed a bug in Line.collideLine.
* Added more unit tests.
This commit is contained in:
Hordur Johannsson 2024-08-11 21:12:49 +00:00 committed by Stephen Gutekanst
parent 8958d9f0de
commit 4cd222ac83

View file

@ -1,13 +1,25 @@
//! # Collision detection
//!
//! This module provides functions to check for collision between various 2D shape.
//! It also provides functions to determine the contact points of two objects that have collided.
//! The contact information can be used to resolve the collision.
//!
const std = @import("std");
const math = @import("main.zig");
const testing = @import("../testing.zig");
const Vec2 = math.Vec2;
const vec2 = math.vec2;
/// An axis aligned rectangle.
///
/// The boundary of the rectangle is considered inside.
pub const Rectangle = struct {
/// Bottom left of the rectangle.
pos: Vec2,
/// The size of the rectangle along the x and y axis.
size: Vec2,
/// Returns true of the two rectangles collide.
pub fn collidesRect(a: Rectangle, b: Rectangle) bool {
return a.pos.x() + a.size.x() >= b.pos.x() and
a.pos.x() <= b.pos.x() + b.size.x() and
@ -24,8 +36,7 @@ pub const Rectangle = struct {
try testing.expect(bool, a.collidesRect(b)).eql(false);
}
// TODO: add test for this function
/// Get collision rectangle for two rectangles collision
/// Get collision rectangle for two rectangles collision.
pub fn collisionRect(a: Rectangle, b: Rectangle) ?Rectangle {
const left = if (a.pos.x() > b.pos.x()) a.pos.x() else b.pos.x();
const right_a = a.pos.x() + a.size.x();
@ -45,8 +56,46 @@ pub const Rectangle = struct {
return null;
}
test collisionRect {
const a: Rectangle = .{ .pos = vec2(-1, -1), .size = vec2(2, 2) };
var b: Rectangle = .{ .pos = vec2(0, 0), .size = vec2(2, 2) };
const r1 = a.collisionRect(b);
if (r1) |r| {
try testing.expect(Vec2, r.pos).eql(vec2(0.0, 0.0));
try testing.expect(Vec2, r.size).eql(vec2(1.0, 1.0));
} else {
try testing.expect(bool, false).eql(true);
}
b.pos = vec2(5.0, 5.0);
const r2 = a.collisionRect(b);
try testing.expect(?Rectangle, r2).eql(null);
}
/// Returns vertices for the Rectangle in CCW order.
pub fn vertices(self: Rectangle) [4]Vec2 {
return [_]Vec2{
self.pos,
self.pos.add(&vec2(self.size.x(), 0.0)),
self.pos.add(&vec2(self.size.x(), self.size.y())),
self.pos.add(&vec2(0.0, self.size.y())),
};
}
test vertices {
const rect = Rectangle{.pos = vec2(0.0, 0.0), .size = vec2(1.0, 1.0)};
const v = rect.vertices();
try testing.expect(Vec2, vec2(0.0, 0.0)).eql(v[0]);
try testing.expect(Vec2, vec2(1.0, 0.0)).eql(v[1]);
try testing.expect(Vec2, vec2(1.0, 1.0)).eql(v[2]);
try testing.expect(Vec2, vec2(0.0, 1.0)).eql(v[3]);
}
};
// A circle shape defined by position and radius.
pub const Circle = struct {
pos: Vec2,
radius: f32,
@ -110,6 +159,7 @@ pub const Circle = struct {
pub const Point = struct {
pos: Vec2,
// Return true if point is inside Rectangle.
pub fn collidesRect(a: Point, b: Rectangle) bool {
return a.pos.x() >= b.pos.x() and
a.pos.x() <= b.pos.x() + b.size.x() and
@ -119,13 +169,20 @@ pub const Point = struct {
test collidesRect {
const a: Point = .{ .pos = vec2(6, 4) };
const c = Point{.pos = vec2(6.0, 3.0)};
var b: Rectangle = .{ .pos = vec2(6, 3), .size = vec2(3, 2) };
try testing.expect(bool, a.collidesRect(b)).eql(true);
try testing.expect(bool, c.collidesRect(b)).eql(true);
b.pos = vec2(9.1, 4);
try testing.expect(bool, a.collidesRect(b)).eql(false);
const p = Point{ .pos = vec2(0.0, 0.0) };
const r = Rectangle{.pos = vec2(0.0, 0.0), .size = vec2(1.0, 1.0)};
try testing.expect(bool, p.collidesRect(r)).eql(true);
}
// Return true if point is inside Circle.
pub fn collidesCircle(a: Point, b: Circle) bool {
const dist_x = a.pos.x() - b.pos.x();
const dist_y = a.pos.y() - b.pos.y();
@ -142,7 +199,9 @@ pub const Point = struct {
try testing.expect(bool, a.collidesCircle(b)).eql(false);
}
// TODO: add test for this function
// Returns true if point is inside polygon.
// The boundary of the polygon is outside.
// A polygon is specified by a list of the polygon vertices in counter clockwise order.
pub fn collidesPoly(point: Point, vertices: []const Vec2) bool {
std.debug.assert(vertices.len > 2);
@ -165,7 +224,24 @@ pub const Point = struct {
return collision;
}
// TODO: add test for this function
test collidesPoly {
const poly = [_]Vec2 {
vec2(-1.0, -1.0),
vec2(1.0, -1.0),
vec2(1.0, 1.0),
vec2(-1.0, 1.0),
};
try testing.expect(bool, Point.collidesPoly(Point{.pos = vec2(0.0, 0.0)}, &poly)).eql(true);
// TODO: decide if boundary is inside or not
//try testing.expect(bool, Point.collidesPoly(Point{.pos = vec2(1.0, 1.0)}, &poly)).eql(true);
try testing.expect(bool, Point.collidesPoly(Point{.pos = vec2(2.0, 2.0)}, &poly)).eql(false);
try testing.expect(bool, Point.collidesPoly(Point{.pos = vec2(-2.0, 2.0)}, &poly)).eql(false);
}
/// Returns true if point is inside triangle.
/// The boundary of the triangle is outside.
/// A triangle is specified by the triangle vertices in counter clockwise order.
pub fn collidesTriangle(point: Point, vertices: []const Vec2) bool {
std.debug.assert(vertices.len == 3);
const p1 = vertices[0];
@ -182,8 +258,30 @@ pub const Point = struct {
return (alpha > 0) and (beta > 0) and (gamma > 0);
}
test collidesTriangle {
const triangle = [_]Vec2 {
vec2(-1.0, -1.0),
vec2(1.0, -1.0),
vec2(0.0, 1.0),
};
// TODO: add test for this function
try testing.expect(bool, Point.collidesPoly(Point{.pos = vec2(0.0, 0.0)}, &triangle)).eql(true);
// TODO: decide if boundary is inside or not
//try testing.expect(bool, Point.collidesPoly(Point{.pos = vec2(0.0, 1.0)}, &triangle)).eql(true);
try testing.expect(bool, Point.collidesPoly(Point{.pos = vec2(2.0, 2.0)}, &triangle)).eql(false);
try testing.expect(bool, Point.collidesPoly(Point{.pos = vec2(-2.0, 2.0)}, &triangle)).eql(false);
// TODO: decide if boundary is inside or not
// const t = [_]Vec2 {
// vec2(0.0, 0.0),
// vec2(1.0, 0.0),
// vec2(1.0, 1.0),
// };
// const p = Point{ .pos = vec2(0.0, 0.0) };
// try testing.expect(bool, p.collidesTriangle(&t)).eql(true);
}
/// Returns true if a point is within the Line's threshold.
pub fn collidesLine(point: Point, line: Line) bool {
const dxc = point.pos.x() - line.start.x();
const dyc = point.pos.y() - line.start.y();
@ -209,23 +307,564 @@ pub const Point = struct {
return false;
}
test collidesLine {
const l = Line{
.start = vec2(-1.0, -1.0),
.end = vec2(1.0, 1.0),
.threshold = 0.1,
};
try testing.expect(bool, Point.collidesLine(Point{.pos = vec2(0.0, 0.0)}, l)).eql(true);
// TODO: decide if boundary is inside or not
//try testing.expect(bool, Point.collidesLine(Point{.pos = vec2(0.0, 0.1)}, l)).eql(true);
try testing.expect(bool, Point.collidesLine(Point{.pos = vec2(0.0, 0.09)}, l)).eql(true);
try testing.expect(bool, Point.collidesLine(Point{.pos = vec2(0.0, 1.0)}, l)).eql(false);
}
};
/// A line specified by a start and endpoint and a threshold for the line thickness.
pub const Line = struct {
start: Vec2,
end: Vec2,
threshold: f32,
// TODO: add test for this function
/// Return true if line and b intersect.
/// This function does not take into account the line treshold.
pub fn collidesLine(a: Line, b: Line) bool {
const start_dist = a.start.sub(&b.start);
const b_end_dist = b.end.sub(&b.start);
const a_end_dist = a.end.sub(&a.start);
const div = b_end_dist.y() * a_end_dist.x() - b_end_dist.x() * a_end_dist.y();
const ua = b_end_dist.x() * start_dist.y() - b_end_dist.y() * start_dist.x() / div;
const ub = a_end_dist.x() * start_dist.y() - a_end_dist.y() * start_dist.x() / div;
const ua = (b_end_dist.x() * start_dist.y() - b_end_dist.y() * start_dist.x()) / div;
const ub = (a_end_dist.x() * start_dist.y() - a_end_dist.y() * start_dist.x()) / div;
return ua >= 0 and ua <= 1 and ub >= 0 and ub <= 1;
}
test collidesLine {
const l0 = Line{.start = vec2(-1.0, -1.0), .end = vec2(1.0, 1.0), .threshold = 0.0};
try testing.expect(bool, true).eql(
l0.collidesLine(Line{.start = vec2(-1.0, 1.0), .end = vec2(1.0, -1.0), .threshold=0.0}));
try testing.expect(bool, true).eql(
l0.collidesLine(Line{.start = vec2(-10.0, 0.0), .end = vec2(10.0, 0.0), .threshold=0.0}));
try testing.expect(bool, true).eql(
l0.collidesLine(Line{.start = vec2(-10.0, 1.0), .end = vec2(10.0, 1.0), .threshold=0.0}));
try testing.expect(bool, true).eql(
l0.collidesLine(Line{.start = vec2(-10.0, -1.0), .end = vec2(10.0, -1.0), .threshold=0.0}));
// TODO: fails if same line
//try testing.expect(bool, true).eql(
// l0.collidesLine(l0));
try testing.expect(bool, false).eql(
l0.collidesLine(Line{.start = vec2(-1.1, -1.1), .end = vec2(1.1, 1.1), .threshold=0.0}));
try testing.expect(bool, false).eql(
l0.collidesLine(Line{.start = vec2(-10.0, 2.0), .end = vec2(10.0, 2.0), .threshold=0.0}));
}
};
/// Contains the contact information between two convex 2D shapes.
/// There can be up to two contacts point in case the objects collide
/// on a paralell line.
///
/// The normal points from A to B, so the objects can be separated by moving
/// B by the vector depth x normal
///
pub const Contact = struct {
/// The contact normal from A to B
normal: Vec2,
/// Depth of the peneration.
depth: f32,
/// Contact point 1 on obj A
cp1: ?Vec2 = null,
/// Contact point 2 on obj A
cp2: ?Vec2 = null,
};
/// Compute the minimum and maximum projection of vertices in v on the line through v0 with normal n
pub fn minmaxProjectionDistance(n: Vec2, v0: Vec2, v: []const Vec2) [2]f32 {
var max_d = n.dot(&v[0].sub(&v0));
var min_d = n.dot(&v[0].sub(&v0));
for (v[1..]) |vb| {
const d = n.dot(&vb.sub(&v0));
if (d < min_d) {
min_d = d;
} else if (d > max_d) {
max_d = d;
}
}
return [2]f32{min_d, max_d};
}
test minmaxProjectionDistance {
const n_up = vec2(0.0, 1.0);
const n_right = vec2(1.0, 0.0);
const v0 = vec2(0.0, 0.0);
const v = [_]Vec2{
vec2(2.0, 0.0),
vec2(1.0, 1.0),
vec2(0.0, -2.0),
vec2(-1.0, 2.0),
vec2(-2.0, 1.0)
};
{
const minmax = minmaxProjectionDistance(n_up, v0, &v);
try testing.expect(f32, -2.0).eql(minmax[0]);
try testing.expect(f32, 2.0).eql(minmax[1]);
}
{
const minmax = minmaxProjectionDistance(n_right, v0, &v);
try testing.expect(f32, -2.0).eql(minmax[0]);
try testing.expect(f32, 2.0).eql(minmax[1]);
}
}
const VertexDepthResult = struct {
v0: Vec2 = undefined,
v1: ?Vec2 = null,
/// Depth of vertex. Positive in the opposite direction of the normal.
d: f32
};
/// Find the vertex in v that is deepest behind the line defined by the point v0 and normal n.
pub fn findDeepestVertex(n: Vec2, v0: Vec2, v: []const Vec2) VertexDepthResult {
var min_depth = VertexDepthResult{
.v0 = v[0],
.d = n.dot(&v[0].sub(&v0))
};
for (v[1..]) |vb| {
const d = n.dot(&vb.sub(&v0));
if (d < min_depth.d) {
min_depth.d = d;
min_depth.v0 = vb;
min_depth.v1 = null;
} else if (d == min_depth.d) {
min_depth.v1 = vb;
}
}
min_depth.d = -min_depth.d;
return min_depth;
}
test findDeepestVertex {
const n_up = vec2(0.0, 1.0);
const v0 = vec2(0.0, 0.0);
// Test finding a single deepest vertex
{
const v = [_]Vec2{
vec2(2.0, 0.0),
vec2(1.0, 1.0),
vec2(0.0, -2.0), // Deepest
vec2(-1.0, 2.0),
vec2(-2.0, 1.0)
};
const depth = findDeepestVertex(n_up, v0, &v);
try testing.expect(Vec2, vec2(0.0, -2.0)).eql(depth.v0);
try testing.expect(?Vec2, null).eql(depth.v1);
try testing.expect(f32, 2.0).eql(depth.d);
}
// Test finding two deepest vertices
{
const v = [_]Vec2{
vec2(2.0, 0.0),
vec2(1.0, 1.0),
vec2(0.0, -3.0), // Deepest
vec2(-1.0, -3.0), // Deepest
vec2(-2.0, 1.0)
};
const depth = findDeepestVertex(n_up, v0, &v);
try testing.expect(Vec2, vec2(0.0, -3.0)).eql(depth.v0);
try testing.expect(Vec2, vec2(-1.0, -3.0)).eql(depth.v1.?);
try testing.expect(f32, 3.0).eql(depth.d);
}
// No vertex behind edge - will return closest vertex instead
{
const v = [_]Vec2{
vec2(2.0, 0.5), // Closest
vec2(1.0, 1.0),
vec2(0.0, 3.0),
vec2(-2.0, 1.0)
};
const depth = findDeepestVertex(n_up, v0, &v);
try testing.expect(Vec2, vec2(2.0, 0.5)).eql(depth.v0);
try testing.expect(?Vec2, null).eql(depth.v1);
try testing.expect(f32, -0.5).eql(depth.d);
}
}
/// Contains information to separate two colliding shapes.
const SeparationResult = struct {
// i0: usize = undefined, // Vertex idx
// i1: ?usize = null,
v0: Vec2 = undefined,
v1: ?Vec2 = null,
e: usize = undefined, // Edge idx
n: Vec2 = undefined, // Edge normal
d: f32 = std.math.floatMax(f32), // Depth
};
/// Find the edge and vertices for the minimum separation required to
/// separate vertices in polygon_a from edge in polygon_b.
/// Returns null if a separting axis is found.
pub fn findMinSeparation(polygon_a: []const Vec2, polygon_b: []const Vec2) ?SeparationResult {
var min_result = SeparationResult{};
var v0 = polygon_b[polygon_b.len-1];
for (polygon_b[0..], 0..) |v1, i| {
const edge = v1.sub(&v0);
const n = vec2(edge.y(), -edge.x()).normalize(0.0);
const min_depth = findDeepestVertex(n, v0, polygon_a);
v0 = v1;
if (min_depth.d < 0.0) {
return null;
}
if (min_depth.d < min_result.d) {
min_result.n = n;
min_result.v0 = min_depth.v0;
min_result.v1 = min_depth.v1;
min_result.d = min_depth.d;
min_result.e = i;
} else if (min_depth.d == min_result.d) {
// TODO: decide how to handle multiple edges with equal penetration
}
}
min_result.e = (min_result.e + polygon_b.len - 1) % polygon_b.len;
return min_result;
}
test findMinSeparation {
const triangle_0 = [_]Vec2{
vec2(-1.0, -1.0),
vec2(1.0, -1.0),
vec2(0.0, 1.0),
};
const triangle_1 = [_]Vec2{
vec2(-1.0, -2.75),
vec2(1.0, -2.75),
vec2(0.0, -0.75),
};
const triangle_2 = [_]Vec2{
vec2(-1.0, -2.75),
vec2(1.0, -2.75),
vec2(0.0, -1.75),
};
// Top point of triangle_1 intersects with first edge of triangle_0 at depth 0.25
const result = findMinSeparation(&triangle_1, &triangle_0);
try testing.expect(Vec2, vec2(0.0, -0.75)).eql(result.?.v0);
try testing.expect(?Vec2, null).eql(result.?.v1);
try testing.expect(usize, 0).eql(result.?.e);
try testing.expect(Vec2, vec2(0.0, -1.0)).eql(result.?.n);
try testing.expect(f32, 0.25).eql(result.?.d);
// Not colliding - bottom edge of triangle_0 separates the two
try testing.expect(?SeparationResult, null).eql(
findMinSeparation(&triangle_2, &triangle_0)
);
}
/// Compute a Contact report between polygon_a and polygon_b if they are colliding.
pub fn polygonPolygonContact(polygon_a: []const Vec2, polygon_b: []const Vec2) ?Contact {
var normal = vec2(0.0, 0.0);
var depth: f32 = 0.0;
var cp1_a: ?Vec2 = null;
var cp2_a: ?Vec2 = null;
const min_separation_a = findMinSeparation(polygon_a, polygon_b) orelse return null;
const min_separation_b = findMinSeparation(polygon_b, polygon_a) orelse return null;
if (min_separation_a.d < min_separation_b.d) {
// Vertex in a passes an edge in b
depth = min_separation_a.d;
normal = min_separation_a.n.mulScalar(-1.0);
cp1_a = min_separation_a.v0;
cp2_a = min_separation_a.v1;
} else if (min_separation_a.d > min_separation_b.d) {
// Vertex in b passes an edge in a
depth = min_separation_b.d;
normal = min_separation_b.n;
cp1_a = min_separation_b.v0.add(&normal.mulScalar(depth));
if (min_separation_b.v1) |v1| {
cp2_a = v1.add(&normal.mulScalar(depth));
}
} else {
// Two edges
depth = min_separation_a.d;
normal = min_separation_a.n.mulScalar(-1.0);
if (@abs(normal.dot(&min_separation_b.n)) != 1.0 or min_separation_a.v1 == null or min_separation_b.v1 == null) {
// Edges are not paralell
cp1_a = min_separation_b.v0;
cp2_a = min_separation_b.v1;
} else {
// Paralell edges - find two contact points
const edge = vec2(min_separation_a.n.y(), -min_separation_a.n.x());
const vertices = [_]Vec2{
min_separation_a.v0,
min_separation_a.v1.?,
min_separation_b.v0,
min_separation_b.v1.?};
const from_a = [4]bool {true, true, false, false};
var distances: [4]f32 = undefined;
for (vertices, &distances) |v, *d| {
d.* = edge.dot(&v);
}
// Sort vertices along the edge
var idx = [_]u8{0,1,2,3};
for (0..3) |i| {
for (i+1..4) |j| {
if (distances[idx[i]] > distances[idx[j]]) {
const t = idx[i];
idx[i] = idx[j];
idx[j] = t;
}
}
}
depth = min_separation_a.d;
normal = min_separation_a.n.mulScalar(-1.0);
cp1_a = if (from_a[idx[1]]) vertices[idx[1]]
else vertices[idx[1]].add(&normal.mulScalar(depth));
cp2_a = if (from_a[idx[2]]) vertices[idx[2]]
else vertices[idx[2]].add(&normal.mulScalar(depth));
}
}
return Contact{
.normal = normal,
.depth = depth,
.cp1 = cp1_a,
.cp2 = cp2_a,
};
}
test polygonPolygonContact {
const triangle_0 = [_]Vec2{
vec2(-1.0, -1.0),
vec2(1.0, -1.0),
vec2(0.0, 1.0),
};
const triangle_1 = [_]Vec2{
vec2(-1.0, -2.75),
vec2(1.0, -2.75),
vec2(0.0, -0.75),
};
const triangle_2 = [_]Vec2{
vec2(-1.0, -2.75),
vec2(1.0, -2.75),
vec2(0.0, -1.75),
};
if (polygonPolygonContact(&triangle_0, &triangle_1)) |contact_0_1| {
try testing.expect(Vec2, vec2(0.0, -1.0)).eql(contact_0_1.normal);
try testing.expect(f32, 0.25).eql(contact_0_1.depth);
try testing.expect(Vec2, vec2(0.0, -1.0)).eql(contact_0_1.cp1.?);
try testing.expect(?Vec2, null).eql(contact_0_1.cp2);
} else {
try testing.expect(bool, true).eql(false);
}
if (polygonPolygonContact(&triangle_1, &triangle_0)) |contact_1_0| {
try testing.expect(Vec2, vec2(0.0, 1.0)).eql(contact_1_0.normal);
try testing.expect(f32, 0.25).eql(contact_1_0.depth);
try testing.expect(Vec2, vec2(0.0, -0.75)).eql(contact_1_0.cp1.?);
try testing.expect(?Vec2, null).eql(contact_1_0.cp2);
} else {
try testing.expect(bool, true).eql(false);
}
try testing.expect(?Contact, null).eql(polygonPolygonContact(&triangle_0, &triangle_2));
try testing.expect(?Contact, null).eql(polygonPolygonContact(&triangle_2, &triangle_0));
const rect1 = Rectangle{.pos = vec2(-1.0, -1.0), .size = vec2(2.0, 2.0)};
const rect2 = Rectangle{.pos = vec2(-1.5, -2.25), .size = vec2(1.0, 1.5)};
const rect3 = Rectangle{.pos = vec2(-0.5, -2.25), .size = vec2(1.0, 1.5)};
const rect4 = Rectangle{.pos = vec2( 0.5, -2.25), .size = vec2(1.0, 1.5)};
const r1 = rect1.vertices();
const r2 = rect2.vertices();
const r3 = rect3.vertices();
const r4 = rect4.vertices();
if (polygonPolygonContact(&r1, &r2)) |contact| {
try testing.expect(Vec2, vec2(0.0, -1.0)).eql(contact.normal);
try testing.expect(f32, 0.25).eql(contact.depth);
try testing.expect(Vec2, vec2(-1.0, -1.0)).eql(contact.cp1.?);
try testing.expect(Vec2, vec2(-0.5, -1.0)).eql(contact.cp2.?);
} else {
try testing.expect(bool, true).eql(false);
}
if (polygonPolygonContact(&r1, &r3)) |contact| {
try testing.expect(Vec2, vec2(0.0, -1.0)).eql(contact.normal);
try testing.expect(f32, 0.25).eql(contact.depth);
} else {
try testing.expect(bool, true).eql(false);
}
if (polygonPolygonContact(&r1, &r4)) |contact| {
try testing.expect(Vec2, vec2(0.0, -1.0)).eql(contact.normal);
try testing.expect(f32, 0.25).eql(contact.depth);
} else {
try testing.expect(bool, true).eql(false);
}
}
/// Compute a Contact report between a Circle and a polygon.
pub fn circlePolygonContact(circle_a: Circle, polygon_b: []const Vec2) ?Contact {
var normal = vec2(0.0, 0.0);
var depth: f32 = 0.0;
var cp1_a: ?Vec2 = null;
var v0 = polygon_b[polygon_b.len-1];
var min_result = struct {
n: Vec2,
d: f32,
i: usize
}{
.n = vec2(0.0, 0.0),
.d = std.math.floatMax(f32),
.i = undefined
};
var closest_vertex = struct {
v: Vec2 = undefined,
d: f32 = std.math.floatMax(f32),
i: usize = undefined,
}{};
for (polygon_b[0..], 0..) |v1, i| {
const edge = v1.sub(&v0);
const n = vec2(edge.y(), -edge.x()).normalize(0.0);
const vc = circle_a.pos.sub(&v0);
const d = vc.dot(&n);
if (vc.len() < closest_vertex.d) {
closest_vertex.v = v0;
closest_vertex.d = vc.len();
closest_vertex.i = i;
}
v0 = v1;
if (d > circle_a.radius) {
// Circle does not collide with this edge
return null;
}
const current_depth = circle_a.radius - d;
if (current_depth < min_result.d) {
min_result.d = current_depth;
min_result.n = n;
min_result.i = i;
}
}
// Check circle to closest point axis
{
v0 = closest_vertex.v;
const n = circle_a.pos.sub(&v0).normalize(0.0);
const minmax_b = minmaxProjectionDistance(n, v0, polygon_b);
// Circle projects to +- radius
const vc = circle_a.pos.sub(&v0);
const d = vc.dot(&n);
const minmax_a = [2]f32{d - circle_a.radius, d + circle_a.radius};
if ((minmax_a[0] > minmax_b[1]) or (minmax_a[1] < minmax_b[0])) {
// Circle does not intersect
return null;
}
const current_depth = @min(minmax_a[1] - minmax_b[0], minmax_b[1] - minmax_a[0]);
if (current_depth <= min_result.d) {
min_result.d = current_depth;
min_result.n = n;
}
}
depth = -min_result.d;
normal = min_result.n.mulScalar(-1.0);
cp1_a = circle_a.pos.add(&normal.mulScalar(circle_a.radius));
return Contact{
.normal = normal,
.depth = -depth,
.cp1 = cp1_a,
};
}
test circlePolygonContact {
const rect1 = Rectangle{.pos = vec2(0.75, -1.0), .size = vec2(2.0, 2.0)};
const r1 = rect1.vertices();
if (circlePolygonContact(Circle{.pos=vec2(0.0, 0.0), .radius = 1.0}, &r1)) |contact| {
try testing.expect(Vec2, vec2(1.0, 0.0)).eql(contact.normal);
try testing.expect(f32, 0.25).eql(contact.depth);
try testing.expect(Vec2, vec2(1.0, 0.0)).eql(contact.cp1.?);
try testing.expect(?Vec2, null).eql(contact.cp2);
} else {
try testing.expect(bool, true).eql(false);
}
try testing.expect(?Contact, null).eql(
circlePolygonContact(Circle{.pos=vec2(-1.0, 0.0), .radius = 1.0}, &r1)
);
}
/// Compute a Contact report between two circles.
pub fn circleCircleContact(circle_a: Circle, circle_b: Circle) ?Contact {
const delta = circle_b.pos.sub(&circle_a.pos);
const distance = delta.len();
const depth = circle_a.radius + circle_b.radius - distance;
if (depth < 0.0) {
return null;
}
// if distance is zero then all separation directions are equivalent. Pick arbitrary one.
const normal = if (distance > 0.0) delta.mulScalar(1.0 / distance) else vec2(1.0, 0.0);
const cp1_a = circle_a.pos.add(&normal.mulScalar(circle_a.radius));
return Contact{
.normal = normal,
.depth = depth,
.cp1 = cp1_a,
};
}
test circleCircleContact {
if (circleCircleContact(Circle{.pos=vec2(0.0, 0.0), .radius = 1.0},
Circle{.pos = vec2(1.75, 0.0), .radius = 1.0})) |contact| {
try testing.expect(Vec2, vec2(1.0, 0.0)).eql(contact.normal);
try testing.expect(f32, 0.25).eql(contact.depth);
try testing.expect(Vec2, vec2(1.0, 0.0)).eql(contact.cp1.?);
try testing.expect(?Vec2, null).eql(contact.cp2);
} else {
try testing.expect(bool, true).eql(false);
}
if (circleCircleContact(Circle{.pos=vec2(0.0, 0.0), .radius = 1.0},
Circle{.pos = vec2(2.0, 0.0), .radius = 1.0})) |contact| {
try testing.expect(Vec2, vec2(1.0, 0.0)).eql(contact.normal);
try testing.expect(f32, 0.0).eql(contact.depth);
try testing.expect(Vec2, vec2(1.0, 0.0)).eql(contact.cp1.?);
try testing.expect(?Vec2, null).eql(contact.cp2);
} else {
try testing.expect(bool, true).eql(false);
}
try testing.expect(?Contact, null).eql(
circleCircleContact(Circle{.pos=vec2(0.0, 0.0), .radius = 1.0},
Circle{.pos = vec2(2.01, 0.0), .radius = 1.0})
);
}