math: implement Mat.eql() and Mat.eqlApprox() methods (#1266)

This commit is contained in:
Joshua Holmes 2024-09-07 16:51:25 -07:00 committed by GitHub
parent d7d8029523
commit 51bf4f40f2
Failed to generate hash of commit

View file

@ -483,6 +483,8 @@ pub fn Mat4x4(
pub const mul = Shared.mul;
pub const mulVec = Shared.mulVec;
pub const eql = Shared.eql;
pub const eqlApprox = Shared.eqlApprox;
};
}
@ -519,46 +521,27 @@ pub fn MatShared(comptime RowVec: type, comptime ColVec: type, comptime Matrix:
return ColVec{ .v = result };
}
// TODO: the below code was correct in our old implementation, it just needs to be updated
// to work with this new Mat approach, swapping f32 for the generic T float type, moving 3x3
// and 4x4 specific functions into the mixin above, writing new tests, etc.
/// Check if two matrices are approximately equal. Returns true if the absolute difference between
/// each element in matrix is less than or equal to the specified tolerance.
pub inline fn eqlApprox(a: *const Matrix, b: *const Matrix, tolerance: ColVec.T) bool {
inline for (0..Matrix.rows) |row| {
if (!ColVec.eqlApprox(&a.v[row], &b.v[row], tolerance)) {
return false;
}
}
return true;
}
// /// Check if two matrices are approximate equal. Returns true if the absolute difference between
// /// each element in matrix them is less or equal than the specified tolerance.
// pub inline fn equals(a: anytype, b: @TypeOf(a), tolerance: f32) bool {
// // TODO: leverage a vec.equals function
// return if (@TypeOf(a) == Mat3x3) {
// return float.equals(f32, a[0][0], b[0][0], tolerance) and
// float.equals(f32, a[0][1], b[0][1], tolerance) and
// float.equals(f32, a[0][2], b[0][2], tolerance) and
// float.equals(f32, a[0][3], b[0][3], tolerance) and
// float.equals(f32, a[1][0], b[1][0], tolerance) and
// float.equals(f32, a[1][1], b[1][1], tolerance) and
// float.equals(f32, a[1][2], b[1][2], tolerance) and
// float.equals(f32, a[1][3], b[1][3], tolerance) and
// float.equals(f32, a[2][0], b[2][0], tolerance) and
// float.equals(f32, a[2][1], b[2][1], tolerance) and
// float.equals(f32, a[2][2], b[2][2], tolerance) and
// float.equals(f32, a[2][3], b[2][3], tolerance);
// } else if (@TypeOf(a) == Mat4x4) {
// return float.equals(f32, a[0][0], b[0][0], tolerance) and
// float.equals(f32, a[0][1], b[0][1], tolerance) and
// float.equals(f32, a[0][2], b[0][2], tolerance) and
// float.equals(f32, a[0][3], b[0][3], tolerance) and
// float.equals(f32, a[1][0], b[1][0], tolerance) and
// float.equals(f32, a[1][1], b[1][1], tolerance) and
// float.equals(f32, a[1][2], b[1][2], tolerance) and
// float.equals(f32, a[1][3], b[1][3], tolerance) and
// float.equals(f32, a[2][0], b[2][0], tolerance) and
// float.equals(f32, a[2][1], b[2][1], tolerance) and
// float.equals(f32, a[2][2], b[2][2], tolerance) and
// float.equals(f32, a[2][3], b[2][3], tolerance) and
// float.equals(f32, a[3][0], b[3][0], tolerance) and
// float.equals(f32, a[3][1], b[3][1], tolerance) and
// float.equals(f32, a[3][2], b[3][2], tolerance) and
// float.equals(f32, a[3][3], b[3][3], tolerance);
// } else @compileError("Expected matrix, found '" ++ @typeName(@TypeOf(a)) ++ "'");
// }
/// Check if two matrices are approximately equal. Returns true if the absolute difference between
/// each element in matrix is less than or equal to the epsilon tolerance.
pub inline fn eql(a: *const Matrix, b: *const Matrix) bool {
inline for (0..Matrix.rows) |row| {
if (!ColVec.eql(&a.v[row], &b.v[row])) {
return false;
}
}
return true;
}
};
}
@ -965,6 +948,70 @@ test "Mat4x4_mul" {
try testing.expect(math.Mat4x4, expected).eql(c);
}
test "Mat4x4_eql_not_ident" {
const m1 = math.Mat4x4.init(
&math.vec4(0, 1, 2, 3),
&math.vec4(4, 5, 6, 7),
&math.vec4(8, 9, 10, 11),
&math.vec4(12, 13, 14, 15),
);
const m2 = math.Mat4x4.init(
&math.vec4(0, 1, 2, 3),
&math.vec4(4.5, 5, 6, 7),
&math.vec4(8, 9, 10, 11),
&math.vec4(12, 13, 14, 15),
);
try testing.expect(bool, math.Mat4x4.eql(&m1, &m2)).eql(false);
}
test "Mat4x4_eql_ident" {
const m1 = math.Mat4x4.init(
&math.vec4(0, 1, 2, 3),
&math.vec4(4, 5, 6, 7),
&math.vec4(8, 9, 10, 11),
&math.vec4(12, 13, 14, 15),
);
const m2 = math.Mat4x4.init(
&math.vec4(0, 1, 2, 3),
&math.vec4(4, 5, 6, 7),
&math.vec4(8, 9, 10, 11),
&math.vec4(12, 13, 14, 15),
);
try testing.expect(bool, math.Mat4x4.eql(&m1, &m2)).eql(true);
}
test "Mat4x4_eqlApprox_not_ident" {
const m1 = math.Mat4x4.init(
&math.vec4(0, 1, 2, 3),
&math.vec4(4, 5, 6, 7),
&math.vec4(8, 9, 10, 11),
&math.vec4(12, 13, 14, 15),
);
const m2 = math.Mat4x4.init(
&math.vec4(0, 1, 2, 3),
&math.vec4(4.11, 5, 6, 7),
&math.vec4(8, 9, 10, 11),
&math.vec4(12, 13, 14, 15),
);
try testing.expect(bool, math.Mat4x4.eqlApprox(&m1, &m2, 0.1)).eql(false);
}
test "Mat4x4_eqlApprox_ident" {
const m1 = math.Mat4x4.init(
&math.vec4(0, 1, 2, 3),
&math.vec4(4, 5, 6, 7),
&math.vec4(8, 9, 10, 11),
&math.vec4(12, 13, 14, 15),
);
const m2 = math.Mat4x4.init(
&math.vec4(0, 1, 2, 3),
&math.vec4(4.09, 5, 6, 7),
&math.vec4(8, 9, 10, 11),
&math.vec4(12, 13, 14, 15),
);
try testing.expect(bool, math.Mat4x4.eqlApprox(&m1, &m2, 0.1)).eql(true);
}
test "projection2D_xy_centered" {
const v = .{
.left = -400,