src/ecs: move mach-ecs@83a3ed801008a976dd79e10068157b02c3b76a36 package to here

Helps hexops/mach#1165

Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
This commit is contained in:
Stephen Gutekanst 2024-03-04 10:27:56 -07:00 committed by Stephen Gutekanst
parent d4cd79440e
commit 5f70579360
8 changed files with 1891 additions and 0 deletions

241
src/ecs/Archetype.zig Normal file
View file

@ -0,0 +1,241 @@
//! Represents a single archetype. i.e., entities which have a specific set of components. When a
//! component is added or removed from an entity, it's archetype changes because the archetype is
//! the set of components an entity has.
//!
//! Database equivalent: a table where rows are entities and columns are components (dense storage).
const std = @import("std");
const Allocator = std.mem.Allocator;
const testing = std.testing;
const assert = std.debug.assert;
const builtin = @import("builtin");
const StringTable = @import("StringTable.zig");
const comp = @import("comptime.zig");
const Archetype = @This();
/// Describes a single column of the archetype (table); i.e. a single type of component
pub const Column = struct {
/// The unique name of the component this column stores.
name: StringTable.Index,
/// A unique identifier for the programming-language type this column stores. In the case of Zig
/// this is a comptime type identifier. For other languages, it may be something else or simply
/// zero if unused.
///
/// This value need only uniquely identify the column type for the duration of a single build of
/// the program.
type_id: u32,
/// The size of the component this column stores.
size: u32,
/// The alignment of the component type this column stores.
alignment: u16,
/// The actual memory where the values are stored. The length/capacity is Archetype.len and
/// Archetype.capacity, as all columns in an Archetype have identical lengths/capacities.
values: []u8,
};
/// The length of the table (in-use number of rows)
len: u32,
/// The capacity of the table (total allocated number of rows)
capacity: u32,
/// Describes the columns in this table. Each column stores all rows for that column.
columns: []Column,
/// A reference to the string table that can be used to identify Column.name's
component_names: *StringTable,
/// A hash composed of all Column.name's, effectively acting as the unique name of this table.
hash: u64,
/// An index to Entities.archetypes, used in the event of a *bucket* hash collision (not a collision
/// of the .hash field) - see Entities.archetypeOrPut for details.
next: ?u32 = null,
pub fn deinit(storage: *Archetype, gpa: Allocator) void {
if (storage.capacity > 0) {
for (storage.columns) |column| gpa.free(column.values);
}
gpa.free(storage.columns);
}
/// appends a new row to this table, with all undefined values.
pub fn appendUndefined(storage: *Archetype, gpa: Allocator) !u32 {
try storage.ensureUnusedCapacity(gpa, 1);
assert(storage.len < storage.capacity);
const row_index = storage.len;
storage.len += 1;
return row_index;
}
// TODO: comptime: missing a runtime variant of this function
pub fn append(storage: *Archetype, gpa: Allocator, row: anytype) !u32 {
comp.debugAssertRowType(storage, row);
try storage.ensureUnusedCapacity(gpa, 1);
assert(storage.len < storage.capacity);
storage.len += 1;
storage.setRow(storage.len - 1, row);
return storage.len;
}
pub fn undoAppend(storage: *Archetype) void {
storage.len -= 1;
}
/// Ensures there is enough unused capacity to store `num_rows`.
pub fn ensureUnusedCapacity(storage: *Archetype, gpa: Allocator, num_rows: usize) !void {
return storage.ensureTotalCapacity(gpa, storage.len + num_rows);
}
/// Ensures the total capacity is enough to store `new_capacity` rows total.
pub fn ensureTotalCapacity(storage: *Archetype, gpa: Allocator, new_capacity: usize) !void {
var better_capacity = storage.capacity;
if (better_capacity >= new_capacity) return;
while (true) {
better_capacity +|= better_capacity / 2 + 8;
if (better_capacity >= new_capacity) break;
}
return storage.setCapacity(gpa, better_capacity);
}
/// Sets the capacity to exactly `new_capacity` rows total
///
/// Asserts `new_capacity >= storage.len`, if you want to shrink capacity then change the len
/// yourself first.
pub fn setCapacity(storage: *Archetype, gpa: Allocator, new_capacity: usize) !void {
assert(new_capacity >= storage.len);
// TODO: ensure columns are sorted by type_id
for (storage.columns) |*column| {
const old_values = column.values;
const new_values = try gpa.alloc(u8, new_capacity * column.size);
if (storage.capacity > 0) {
@memcpy(new_values[0..old_values.len], old_values);
gpa.free(old_values);
}
column.values = new_values;
}
storage.capacity = @as(u32, @intCast(new_capacity));
}
// TODO: comptime: missing a runtime variant of this function
/// Sets the entire row's values in the table.
pub fn setRow(storage: *Archetype, row_index: u32, row: anytype) void {
comp.debugAssertRowType(storage, row);
const fields = std.meta.fields(@TypeOf(row));
inline for (fields, 0..) |field, index| {
const ColumnType = field.type;
if (@sizeOf(ColumnType) == 0) continue;
const column = storage.columns[index];
const column_values = @as([*]ColumnType, @ptrCast(@alignCast(column.values.ptr)));
column_values[row_index] = @field(row, field.name);
}
}
/// Sets the value of the named components (columns) for the given row in the table.
pub fn set(storage: *Archetype, row_index: u32, name: StringTable.Index, component: anytype) void {
const ColumnType = @TypeOf(component);
if (@sizeOf(ColumnType) == 0) return;
if (comp.is_debug) comp.debugAssertColumnType(storage, storage.columnByName(name).?, @TypeOf(component));
storage.setDynamic(
row_index,
name,
std.mem.asBytes(&component),
@alignOf(@TypeOf(component)),
comp.typeId(@TypeOf(component)),
);
}
pub fn setDynamic(storage: *Archetype, row_index: u32, name: StringTable.Index, component: []const u8, alignment: u16, type_id: u32) void {
if (comp.is_debug) {
// TODO: improve error messages
assert(storage.len != 0 and storage.len >= row_index);
assert(storage.columnByName(name).?.size == component.len);
assert(storage.columnByName(name).?.alignment == alignment);
assert(storage.columnByName(name).?.type_id == type_id);
}
const values = storage.getColumnValuesRaw(name) orelse @panic("no such component");
const start = component.len * row_index;
@memcpy(values[start .. start + component.len], component);
}
pub fn get(storage: *Archetype, row_index: u32, name: StringTable.Index, comptime ColumnType: type) ?ColumnType {
if (@sizeOf(ColumnType) == 0) return {};
if (comp.is_debug) comp.debugAssertColumnType(storage, storage.columnByName(name) orelse return null, ColumnType);
const bytes = storage.getDynamic(row_index, name, @sizeOf(ColumnType), @alignOf(ColumnType), comp.typeId(ColumnType)) orelse return null;
return @as(*ColumnType, @alignCast(@ptrCast(bytes.ptr))).*;
}
pub fn getDynamic(storage: *Archetype, row_index: u32, name: StringTable.Index, size: u32, alignment: u16, type_id: u32) ?[]u8 {
const values = storage.getColumnValuesRaw(name) orelse return null;
if (comp.is_debug) {
// TODO: improve error messages
assert(storage.columnByName(name).?.size == size);
assert(storage.columnByName(name).?.alignment == alignment);
assert(storage.columnByName(name).?.type_id == type_id);
}
const start = size * row_index;
const end = start + size;
return values[start..end];
}
/// Swap-removes the specified row with the last row in the table.
pub fn remove(storage: *Archetype, row_index: u32) void {
if (storage.len > 1) {
for (storage.columns) |column| {
const dstStart = column.size * row_index;
const dst = column.values[dstStart .. dstStart + column.size];
const srcStart = column.size * (storage.len - 1);
const src = column.values[srcStart .. srcStart + column.size];
@memcpy(dst, src);
}
}
storage.len -= 1;
}
/// Tells if this archetype has every one of the given components.
pub fn hasComponents(storage: *Archetype, names: []const u32) bool {
for (names) |name| {
if (!storage.hasComponent(name)) return false;
}
return true;
}
/// Tells if this archetype has a component with the specified name.
pub fn hasComponent(storage: *Archetype, name: StringTable.Index) bool {
return storage.columnByName(name) != null;
}
pub fn getColumnValues(storage: *Archetype, name: StringTable.Index, comptime ColumnType: type) ?[]ColumnType {
const values = storage.getColumnValuesRaw(name) orelse return null;
if (comp.is_debug) comp.debugAssertColumnType(storage, storage.columnByName(name).?, ColumnType);
var ptr = @as([*]ColumnType, @ptrCast(@alignCast(values.ptr)));
const column_values = ptr[0..storage.capacity];
return column_values;
}
pub fn getColumnValuesRaw(storage: *Archetype, name: StringTable.Index) ?[]u8 {
const column = storage.columnByName(name) orelse return null;
return column.values;
}
pub inline fn columnByName(storage: *Archetype, name: StringTable.Index) ?*Column {
for (storage.columns) |*column| {
if (column.name == name) return column;
}
return null;
}

105
src/ecs/StringTable.zig Normal file
View file

@ -0,0 +1,105 @@
//! Stores null-terminated strings and maps them to unique 32-bit indices.
//!
//! Lookups are omnidirectional: both (string -> index) and (index -> string) are supported
//! operations.
//!
//! The implementation is based on:
//! https://zig.news/andrewrk/how-to-use-hash-map-contexts-to-save-memory-when-doing-a-string-table-3l33
const std = @import("std");
const StringTable = @This();
string_bytes: std.ArrayListUnmanaged(u8) = .{},
/// Key is string_bytes index.
string_table: std.HashMapUnmanaged(u32, void, IndexContext, std.hash_map.default_max_load_percentage) = .{},
pub const Index = u32;
/// Returns the index of a string key, if it exists.
pub fn index(table: *StringTable, key: []const u8) ?Index {
const slice_context: SliceAdapter = .{ .string_bytes = &table.string_bytes };
const found_entry = table.string_table.getEntryAdapted(key, slice_context);
if (found_entry) |e| return e.key_ptr.*;
return null;
}
/// Returns the index of a string key, inserting if not exists.
pub fn indexOrPut(table: *StringTable, allocator: std.mem.Allocator, key: []const u8) !Index {
const slice_context: SliceAdapter = .{ .string_bytes = &table.string_bytes };
const index_context: IndexContext = .{ .string_bytes = &table.string_bytes };
const entry = try table.string_table.getOrPutContextAdapted(allocator, key, slice_context, index_context);
if (!entry.found_existing) {
entry.key_ptr.* = @intCast(table.string_bytes.items.len);
try table.string_bytes.appendSlice(allocator, key);
try table.string_bytes.append(allocator, '\x00');
}
return entry.key_ptr.*;
}
/// Returns a null-terminated string given the index
pub fn string(table: *StringTable, idx: Index) [:0]const u8 {
return std.mem.span(@as([*:0]const u8, @ptrCast(table.string_bytes.items.ptr)) + idx);
}
pub fn deinit(table: *StringTable, allocator: std.mem.Allocator) void {
table.string_bytes.deinit(allocator);
table.string_table.deinit(allocator);
}
const IndexContext = struct {
string_bytes: *std.ArrayListUnmanaged(u8),
pub fn eql(ctx: IndexContext, a: u32, b: u32) bool {
_ = ctx;
return a == b;
}
pub fn hash(ctx: IndexContext, x: u32) u64 {
const x_slice = std.mem.span(@as([*:0]const u8, @ptrCast(ctx.string_bytes.items.ptr)) + x);
return std.hash_map.hashString(x_slice);
}
};
const SliceAdapter = struct {
string_bytes: *std.ArrayListUnmanaged(u8),
pub fn eql(adapter: SliceAdapter, a_slice: []const u8, b: u32) bool {
const b_slice = std.mem.span(@as([*:0]const u8, @ptrCast(adapter.string_bytes.items.ptr)) + b);
return std.mem.eql(u8, a_slice, b_slice);
}
pub fn hash(adapter: SliceAdapter, adapted_key: []const u8) u64 {
_ = adapter;
return std.hash_map.hashString(adapted_key);
}
};
test {
const gpa = std.testing.allocator;
var table: StringTable = .{};
defer table.deinit(gpa);
const index_context: IndexContext = .{ .string_bytes = &table.string_bytes };
_ = index_context;
// "hello" -> index 0
const hello_index = try table.indexOrPut(gpa, "hello");
try std.testing.expectEqual(@as(Index, 0), hello_index);
try std.testing.expectEqual(@as(Index, 6), try table.indexOrPut(gpa, "world"));
try std.testing.expectEqual(@as(Index, 12), try table.indexOrPut(gpa, "foo"));
try std.testing.expectEqual(@as(Index, 16), try table.indexOrPut(gpa, "bar"));
try std.testing.expectEqual(@as(Index, 20), try table.indexOrPut(gpa, "baz"));
// index 0 -> "hello"
try std.testing.expectEqualStrings("hello", table.string(hello_index));
// Lookup "hello" -> index 0
try std.testing.expectEqual(hello_index, table.index("hello").?);
// Lookup "foobar" -> null
try std.testing.expectEqual(@as(?Index, null), table.index("foobar"));
}

64
src/ecs/comptime.zig Normal file
View file

@ -0,0 +1,64 @@
const std = @import("std");
const builtin = @import("builtin");
const Archetype = @import("Archetype.zig");
const StringTable = @import("StringTable.zig");
pub const is_debug = builtin.mode == .Debug;
/// Returns a unique comptime usize integer representing the type T. Value will change across
/// different compilations.
pub fn typeId(comptime T: type) u32 {
_ = T;
return @truncate(@intFromPtr(&struct {
var x: u8 = 0;
}.x));
}
/// Asserts that T matches the type of the column.
pub inline fn debugAssertColumnType(storage: *Archetype, column: *Archetype.Column, comptime T: type) void {
if (is_debug) {
if (typeId(T) != column.type_id) std.debug.panic("unexpected type: {s} expected: {s}", .{
@typeName(T),
storage.component_names.string(column.name),
});
}
}
/// Asserts that a tuple `row` to be e.g. appended to an archetype has values that actually match
/// all of the columns of the archetype table.
pub inline fn debugAssertRowType(storage: *Archetype, row: anytype) void {
if (is_debug) {
inline for (std.meta.fields(@TypeOf(row)), 0..) |field, index| {
debugAssertColumnType(storage, &storage.columns[index], field.type);
}
}
}
// TODO: comptime refactor
pub fn ArchetypeSlicer(comptime all_components: anytype) type {
return struct {
archetype: *Archetype,
pub fn slice(
slicer: @This(),
comptime namespace_name: std.meta.FieldEnum(@TypeOf(all_components)),
comptime component_name: std.meta.DeclEnum(@field(all_components, @tagName(namespace_name))),
) []@field(
@field(all_components, @tagName(namespace_name)),
@tagName(component_name),
) {
const Type = @field(
@field(all_components, @tagName(namespace_name)),
@tagName(component_name),
);
if (namespace_name == .entity and component_name == .id) {
const name_id = slicer.archetype.component_names.index("id").?;
return slicer.archetype.getColumnValues(name_id, Type).?[0..slicer.archetype.len];
}
const name = @tagName(namespace_name) ++ "." ++ @tagName(component_name);
const name_id = slicer.archetype.component_names.index(name).?;
return slicer.archetype.getColumnValues(name_id, Type).?[0..slicer.archetype.len];
}
};
}

880
src/ecs/entities.zig Normal file
View file

@ -0,0 +1,880 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const testing = std.testing;
const builtin = @import("builtin");
const assert = std.debug.assert;
const query_mod = @import("query.zig");
const Archetype = @import("Archetype.zig");
const StringTable = @import("StringTable.zig");
const comp = @import("comptime.zig");
/// An entity ID uniquely identifies an entity globally within an Entities set.
pub const EntityID = u64;
fn byTypeId(context: void, lhs: Archetype.Column, rhs: Archetype.Column) bool {
_ = context;
return lhs.type_id < rhs.type_id;
}
/// A database of entities. For example, all player, monster, etc. entities in a game world.
///
/// ```
/// const world = Entities.init(allocator); // all entities in our world.
/// defer world.deinit();
///
/// const player1 = world.new(); // our first "player" entity
/// const player2 = world.new(); // our second "player" entity
/// ```
///
/// Entities are divided into archetypes for optimal, CPU cache efficient storage. For example, all
/// entities with two components `Location` and `Name` are stored in the same table dedicated to
/// densely storing `(Location, Name)` rows in contiguous memory. This not only ensures CPU cache
/// efficiency (leveraging data oriented design) which improves iteration speed over entities for
/// example, but makes queries like "find all entities with a Location component" ridiculously fast
/// because one need only find the tables which have a column for storing Location components and it
/// is then guaranteed every entity in the table has that component (entities do not need to be
/// checked one by one to determine if they have a Location component.)
///
/// Components can be added and removed to entities at runtime as you please:
///
/// ```
/// try player1.set("rotation", Rotation{ .degrees = 90 });
/// try player1.remove("rotation");
/// ```
///
/// When getting a component value, you must know it's type or undefined behavior will occur:
/// TODO: improve this!
///
/// ```
/// if (player1.get("rotation", Rotation)) |rotation| {
/// // player1 had a rotation component!
/// }
/// ```
///
/// When a component is added or removed from an entity, it's archetype is said to change. For
/// example player1 may have had the archetype `(Location, Name)` before, and after adding the
/// rotation component has the archetype `(Location, Name, Rotation)`. It will be automagically
/// "moved" from the table that stores entities with `(Location, Name)` components to the table that
/// stores `(Location, Name, Rotation)` components for you.
///
/// You can have 65,535 archetypes in total, and 4,294,967,295 entities total. Entities which are
/// deleted are merely marked as "unused" and recycled
///
/// Database equivalents:
/// * Entities is a database of tables, where each table represents a single archetype.
/// * Archetype is a table, whose rows are entities and columns are components.
/// * EntityID is a mere 32-bit array index, pointing to a 16-bit archetype table index and 32-bit
/// row index, enabling entities to "move" from one archetype table to another seamlessly and
/// making lookup by entity ID a few cheap array indexing operations.
/// * ComponentStorage(T) is a column of data within a table for a single type of component `T`.
pub fn Entities(comptime all_components: anytype) type {
// TODO: validate all_components is a namespaced component set in the form we expect
return struct {
allocator: Allocator,
/// TODO!
counter: EntityID = 0,
/// A mapping of entity IDs (array indices) to where an entity's component values are actually
/// stored.
entities: std.AutoHashMapUnmanaged(EntityID, Pointer) = .{},
// All archetypes are stored in a bucket. The number of buckets is configurable, and which
// bucket an archetype will be stored in is based on the hash of all its columns / component
// names.
seed: u64 = 0xdeadbeef,
buckets: []?u32, // indices into archetypes
archetypes: std.ArrayListUnmanaged(Archetype) = .{},
/// Maps component names <-> unique IDs
component_names: *StringTable,
id_name: StringTable.Index = 0,
const Self = @This();
/// Points to where an entity is stored, specifically in which archetype table and in which row
/// of that table. That is, the entity's component values are stored at:
///
/// ```
/// Entities.archetypes.items[ptr.archetype_index].rows[ptr.row_index]
/// ```
///
pub const Pointer = struct {
archetype_index: u32,
row_index: u32,
};
/// A complex query for entities matching a given criteria
pub const Query = query_mod.Query(all_components);
pub const QueryTag = query_mod.QueryTag;
pub fn init(allocator: Allocator) !Self {
const component_names = try allocator.create(StringTable);
errdefer allocator.destroy(component_names);
component_names.* = .{};
const buckets = try allocator.alloc(?u32, 1024); // TODO: configurable size
errdefer allocator.free(buckets);
for (buckets) |*b| b.* = null;
var entities = Self{
.allocator = allocator,
.component_names = component_names,
.buckets = buckets,
};
entities.id_name = try entities.component_names.indexOrPut(allocator, "id");
const columns = try allocator.alloc(Archetype.Column, 1);
columns[0] = .{
.name = entities.id_name,
.type_id = comp.typeId(EntityID),
.size = @sizeOf(EntityID),
.alignment = @alignOf(EntityID),
.values = undefined,
};
const archetype_entry = try entities.archetypeOrPut(columns);
archetype_entry.ptr.* = .{
.len = 0,
.capacity = 0,
.columns = columns,
.component_names = entities.component_names,
.hash = archetype_entry.hash,
};
return entities;
}
pub fn deinit(entities: *Self) void {
entities.entities.deinit(entities.allocator);
entities.component_names.deinit(entities.allocator);
entities.allocator.destroy(entities.component_names);
entities.allocator.free(entities.buckets);
for (entities.archetypes.items) |*archetype| archetype.deinit(entities.allocator);
entities.archetypes.deinit(entities.allocator);
}
fn archetypeOrPut(
entities: *Self,
columns: []const Archetype.Column,
) !struct {
found_existing: bool,
hash: u64,
index: u32,
ptr: *Archetype,
} {
var hasher = std.hash.XxHash64.init(entities.seed);
for (columns) |column| {
hasher.update(std.mem.asBytes(&column.name));
}
const hash = hasher.final();
const bucket_index = hash % entities.buckets.len;
if (entities.buckets[bucket_index]) |bucket| {
// Bucket already exists
const archetype = &entities.archetypes.items[bucket];
if (archetype.next) |_| {
// Multiple archetypes in bucket (there were collisions)
while (archetype.next) |collision_index| {
const collision = &entities.archetypes.items[collision_index];
if (collision.hash == hash) {
// Probably a match
// TODO: technically a hash collision could occur here, so maybe check
// column IDs are equal here too?
return .{ .found_existing = true, .hash = hash, .index = collision_index, .ptr = collision };
}
}
// New collision
try entities.archetypes.append(entities.allocator, undefined);
const index = entities.archetypes.items.len - 1;
const ptr = &entities.archetypes.items[index];
archetype.next = @intCast(index);
return .{ .found_existing = false, .hash = hash, .index = @intCast(index), .ptr = ptr };
} else if (archetype.hash == hash) {
// Exact match
return .{ .found_existing = true, .hash = hash, .index = bucket, .ptr = archetype };
}
// New collision
try entities.archetypes.append(entities.allocator, undefined);
const index = entities.archetypes.items.len - 1;
const ptr = &entities.archetypes.items[index];
archetype.next = @intCast(index);
return .{ .found_existing = false, .hash = hash, .index = @intCast(index), .ptr = ptr };
}
// Bucket doesn't exist
try entities.archetypes.append(entities.allocator, undefined);
const index = entities.archetypes.items.len - 1;
const ptr = &entities.archetypes.items[index];
entities.buckets[bucket_index] = @intCast(index);
return .{ .found_existing = false, .hash = hash, .index = @intCast(index), .ptr = ptr };
}
/// Returns a new entity.
pub fn new(entities: *Self) !EntityID {
const new_id = entities.counter;
entities.counter += 1;
// TODO: could skip this lookup if we store pointer
const archetype_entry = try entities.archetypeOrPut(&.{
.{
.name = entities.id_name,
.type_id = comp.typeId(EntityID),
.size = @sizeOf(EntityID),
.alignment = @alignOf(EntityID),
.values = undefined,
},
});
assert(archetype_entry.found_existing);
var void_archetype = archetype_entry.ptr;
const new_row = try void_archetype.append(entities.allocator, .{ .id = new_id });
const void_pointer = Pointer{
.archetype_index = 0, // void archetype is guaranteed to be first index
.row_index = new_row,
};
errdefer void_archetype.undoAppend();
try entities.entities.put(entities.allocator, new_id, void_pointer);
return new_id;
}
/// Removes an entity.
pub fn remove(entities: *Self, entity: EntityID) !void {
var archetype = entities.archetypeByID(entity);
const ptr = entities.entities.get(entity).?;
// A swap removal will be performed, update the entity stored in the last row of the
// archetype table to point to the row the entity we are removing is currently located.
if (archetype.len > 1) {
const last_row_entity_id = archetype.get(archetype.len - 1, entities.id_name, EntityID).?;
try entities.entities.put(entities.allocator, last_row_entity_id, Pointer{
.archetype_index = ptr.archetype_index,
.row_index = ptr.row_index,
});
}
// Perform a swap removal to remove our entity from the archetype table.
archetype.remove(ptr.row_index);
_ = entities.entities.remove(entity);
}
/// Given a component name, returns its ID. A new ID is created if needed.
///
/// The set of components used is expected to be static for the lifetime of the Entities,
/// and as such this function allocates component names but there is no way to release that
/// memory until Entities.deinit() is called.
pub fn componentName(entities: *Self, name_str: []const u8) StringTable.Index {
return entities.component_names.indexOrPut(entities.allocator, name_str) catch @panic("TODO: implement stateful OOM");
}
/// Returns the archetype storage for the given entity.
pub inline fn archetypeByID(entities: *Self, entity: EntityID) *Archetype {
const ptr = entities.entities.get(entity).?;
return &entities.archetypes.items[ptr.archetype_index];
}
/// Sets the named component to the specified value for the given entity,
/// moving the entity from it's current archetype table to the new archetype
/// table if required.
pub fn setComponent(
entities: *Self,
entity: EntityID,
comptime namespace_name: std.meta.FieldEnum(@TypeOf(all_components)),
comptime component_name: std.meta.DeclEnum(@field(all_components, @tagName(namespace_name))),
component: @field(
@field(all_components, @tagName(namespace_name)),
@tagName(component_name),
),
) !void {
const name_str = @tagName(namespace_name) ++ "." ++ @tagName(component_name);
const name_id = try entities.component_names.indexOrPut(entities.allocator, name_str);
const prev_archetype_idx = entities.entities.get(entity).?.archetype_index;
var prev_archetype = &entities.archetypes.items[prev_archetype_idx];
var archetype: ?*Archetype = if (prev_archetype.hasComponent(name_id)) prev_archetype else null;
var archetype_idx: u32 = if (archetype != null) prev_archetype_idx else 0;
if (archetype == null) {
// TODO: eliminate the need for allocation and sorting here, since this can occur
// if an archetype already exists (found_existing case below)
const columns = try entities.allocator.alloc(Archetype.Column, prev_archetype.columns.len + 1);
@memcpy(columns[0 .. columns.len - 1], prev_archetype.columns);
for (columns) |*column| {
column.values = undefined;
}
columns[columns.len - 1] = .{
.name = name_id,
.type_id = comp.typeId(@TypeOf(component)),
.size = @sizeOf(@TypeOf(component)),
.alignment = if (@sizeOf(@TypeOf(component)) == 0) 1 else @alignOf(@TypeOf(component)),
.values = undefined,
};
std.sort.pdq(Archetype.Column, columns, {}, byTypeId);
const archetype_entry = try entities.archetypeOrPut(columns);
if (!archetype_entry.found_existing) {
archetype_entry.ptr.* = .{
.len = 0,
.capacity = 0,
.columns = columns,
.component_names = entities.component_names,
.hash = archetype_entry.hash,
};
} else {
entities.allocator.free(columns);
}
archetype = archetype_entry.ptr;
archetype_idx = archetype_entry.index;
}
// Either new storage (if the entity moved between storage tables due to having a new
// component) or the prior storage (if the entity already had the component and it's value
// is merely being updated.)
var current_archetype_storage = archetype.?;
if (archetype_idx == prev_archetype_idx) {
// Update the value of the existing component of the entity.
const ptr = entities.entities.get(entity).?;
current_archetype_storage.set(ptr.row_index, name_id, component);
return;
}
// Copy to all component values for our entity from the old archetype storage (archetype)
// to the new one (current_archetype_storage).
const new_row = try current_archetype_storage.appendUndefined(entities.allocator);
const old_ptr = entities.entities.get(entity).?;
// Update the storage/columns for all of the existing components on the entity.
current_archetype_storage.set(new_row, entities.id_name, entity);
for (prev_archetype.columns) |column| {
if (column.name == entities.id_name) continue;
for (current_archetype_storage.columns) |corresponding| {
if (column.name == corresponding.name) {
const old_value_raw = prev_archetype.getDynamic(old_ptr.row_index, column.name, column.size, column.alignment, column.type_id).?;
current_archetype_storage.setDynamic(new_row, corresponding.name, old_value_raw, corresponding.alignment, corresponding.type_id);
break;
}
}
}
// Update the storage/column for the new component.
current_archetype_storage.set(new_row, name_id, component);
prev_archetype.remove(old_ptr.row_index);
if (prev_archetype.len > 0) {
const swapped_entity_id = prev_archetype.get(old_ptr.row_index, entities.id_name, EntityID).?;
try entities.entities.put(entities.allocator, swapped_entity_id, old_ptr);
}
try entities.entities.put(entities.allocator, entity, Pointer{
.archetype_index = archetype_idx,
.row_index = new_row,
});
return;
}
/// Sets the named component to the specified value for the given entity,
/// moving the entity from it's current archetype table to the new archetype
/// table if required.
///
/// For tags, set component.len = 0 and alignment = 1
pub fn setComponentDynamic(
entities: *Self,
entity: EntityID,
name_id: StringTable.Index,
component: []const u8,
alignment: u16,
type_id: u32,
) !void {
const prev_archetype_idx = entities.entities.get(entity).?.archetype_index;
var prev_archetype = &entities.archetypes.items[prev_archetype_idx];
var archetype: ?*Archetype = if (prev_archetype.hasComponent(name_id)) prev_archetype else null;
var archetype_idx: u32 = if (archetype != null) prev_archetype_idx else 0;
if (archetype == null) {
// TODO: eliminate the need for allocation and sorting here, since this can occur
// if an archetype already exists (found_existing case below)
const columns = try entities.allocator.alloc(Archetype.Column, prev_archetype.columns.len + 1);
@memcpy(columns[0 .. columns.len - 1], prev_archetype.columns);
for (columns) |*column| {
column.values = undefined;
}
columns[columns.len - 1] = .{
.name = name_id,
.type_id = type_id,
.size = @intCast(component.len),
.alignment = alignment,
.values = undefined,
};
std.sort.pdq(Archetype.Column, columns, {}, byTypeId);
const archetype_entry = try entities.archetypeOrPut(columns);
if (!archetype_entry.found_existing) {
archetype_entry.ptr.* = .{
.len = 0,
.capacity = 0,
.columns = columns,
.component_names = entities.component_names,
.hash = archetype_entry.hash,
};
} else {
entities.allocator.free(columns);
}
archetype = archetype_entry.ptr;
archetype_idx = archetype_entry.index;
}
// Either new storage (if the entity moved between storage tables due to having a new
// component) or the prior storage (if the entity already had the component and it's value
// is merely being updated.)
var current_archetype_storage = archetype.?;
if (archetype_idx == prev_archetype_idx) {
// Update the value of the existing component of the entity.
const ptr = entities.entities.get(entity).?;
current_archetype_storage.setDynamic(ptr.row_index, name_id, component, alignment, type_id);
return;
}
// Copy to all component values for our entity from the old archetype storage (archetype)
// to the new one (current_archetype_storage).
const new_row = try current_archetype_storage.appendUndefined(entities.allocator);
const old_ptr = entities.entities.get(entity).?;
// Update the storage/columns for all of the existing components on the entity.
current_archetype_storage.set(new_row, entities.id_name, entity);
for (prev_archetype.columns) |column| {
if (column.name == entities.id_name) continue;
for (current_archetype_storage.columns) |corresponding| {
if (column.name == corresponding.name) {
const old_value_raw = prev_archetype.getDynamic(old_ptr.row_index, column.name, column.size, column.alignment, column.type_id).?;
current_archetype_storage.setDynamic(new_row, corresponding.name, old_value_raw, corresponding.alignment, corresponding.type_id);
break;
}
}
}
// Update the storage/column for the new component.
current_archetype_storage.setDynamic(new_row, name_id, component, alignment, type_id);
prev_archetype.remove(old_ptr.row_index);
if (prev_archetype.len > 0) {
const swapped_entity_id = prev_archetype.get(old_ptr.row_index, entities.id_name, EntityID).?;
try entities.entities.put(entities.allocator, swapped_entity_id, old_ptr);
}
try entities.entities.put(entities.allocator, entity, Pointer{
.archetype_index = archetype_idx,
.row_index = new_row,
});
return;
}
/// Gets the named component of the given type.
/// Returns null if the component does not exist on the entity.
pub fn getComponent(
entities: *Self,
entity: EntityID,
comptime namespace_name: std.meta.FieldEnum(@TypeOf(all_components)),
comptime component_name: std.meta.DeclEnum(@field(all_components, @tagName(namespace_name))),
) ?@field(
@field(all_components, @tagName(namespace_name)),
@tagName(component_name),
) {
const Component = comptime @field(
@field(all_components, @tagName(namespace_name)),
@tagName(component_name),
);
const name_str = @tagName(namespace_name) ++ "." ++ @tagName(component_name);
const name_id = entities.component_names.index(name_str) orelse return null;
var archetype = entities.archetypeByID(entity);
const ptr = entities.entities.get(entity).?;
return archetype.get(ptr.row_index, name_id, Component);
}
/// Gets the named component of the given type.
/// Returns null if the component does not exist on the entity.
///
/// For tags, set size = 0 and alignment = 1
pub fn getComponentDynamic(
entities: *Self,
entity: EntityID,
name_id: StringTable.Index,
size: u32,
alignment: u16,
type_id: u32,
) ?[]u8 {
var archetype = entities.archetypeByID(entity);
const ptr = entities.entities.get(entity).?;
return archetype.getDynamic(ptr.row_index, name_id, size, alignment, type_id);
}
/// Removes the named component from the entity, or noop if it doesn't have such a component.
pub fn removeComponent(
entities: *Self,
entity: EntityID,
comptime namespace_name: std.meta.FieldEnum(@TypeOf(all_components)),
comptime component_name: std.meta.DeclEnum(@field(all_components, @tagName(namespace_name))),
) !void {
const name_str = @tagName(namespace_name) ++ "." ++ @tagName(component_name);
const name_id = try entities.component_names.indexOrPut(entities.allocator, name_str);
return entities.removeComponentDynamic(entity, name_id);
}
/// Removes the named component from the entity, or noop if it doesn't have such a component.
pub fn removeComponentDynamic(
entities: *Self,
entity: EntityID,
name_id: StringTable.Index,
) !void {
const prev_archetype_idx = entities.entities.get(entity).?.archetype_index;
var prev_archetype = &entities.archetypes.items[prev_archetype_idx];
var archetype: ?*Archetype = if (prev_archetype.hasComponent(name_id)) prev_archetype else return;
var archetype_idx: u32 = if (archetype != null) prev_archetype_idx else 0;
// Determine which archetype the entity will move to.
// TODO: eliminate this allocation in the found_existing case below
const columns = try entities.allocator.alloc(Archetype.Column, prev_archetype.columns.len - 1);
var i: usize = 0;
for (prev_archetype.columns) |old_column| {
if (old_column.name == name_id) continue;
columns[i] = old_column;
columns[i].values = undefined;
i += 1;
}
const archetype_entry = try entities.archetypeOrPut(columns);
if (!archetype_entry.found_existing) {
archetype_entry.ptr.* = .{
.len = 0,
.capacity = 0,
.columns = columns,
.component_names = entities.component_names,
.hash = archetype_entry.hash,
};
} else {
entities.allocator.free(columns);
}
archetype = archetype_entry.ptr;
archetype_idx = archetype_entry.index;
var current_archetype_storage = archetype.?;
// Copy all component values for our entity from the old archetype storage (archetype)
// to the new one (current_archetype_storage).
const new_row = try current_archetype_storage.appendUndefined(entities.allocator);
const old_ptr = entities.entities.get(entity).?;
// Update the storage/columns for all of the existing components on the entity that exist in
// the new archetype table (i.e. excluding the component to remove.)
current_archetype_storage.set(new_row, entities.id_name, entity);
for (current_archetype_storage.columns) |column| {
if (column.name == entities.id_name) continue;
for (prev_archetype.columns) |corresponding| {
if (column.name == corresponding.name) {
const old_value_raw = prev_archetype.getDynamic(old_ptr.row_index, column.name, column.size, column.alignment, column.type_id).?;
current_archetype_storage.setDynamic(new_row, column.name, old_value_raw, column.alignment, column.type_id);
break;
}
}
}
prev_archetype.remove(old_ptr.row_index);
if (prev_archetype.len > 0) {
const swapped_entity_id = prev_archetype.get(old_ptr.row_index, entities.id_name, EntityID).?;
try entities.entities.put(entities.allocator, swapped_entity_id, old_ptr);
}
try entities.entities.put(entities.allocator, entity, Pointer{
.archetype_index = archetype_idx,
.row_index = new_row,
});
}
// Queries for archetypes matching the given query.
pub fn query(
entities: *Self,
q: Query,
) ArchetypeIterator(all_components) {
return ArchetypeIterator(all_components).init(entities, q);
}
// TODO: queryDynamic
// TODO: iteration over all entities
// TODO: iteration over all entities with components (U, V, ...)
// TODO: iteration over all entities with type T
// TODO: iteration over all entities with type T and components (U, V, ...)
// TODO: "indexes" - a few ideas we could express:
//
// * Graph relations index: e.g. parent-child entity relations for a DOM / UI / scene graph.
// * Spatial index: "give me all entities within 5 units distance from (x, y, z)"
// * Generic index: "give me all entities where arbitraryFunction(e) returns true"
//
// TODO: ability to remove archetype entirely, deleting all entities in it
// TODO: ability to remove archetypes with no entities (garbage collection)
};
}
// TODO: move this type somewhere else
pub fn ArchetypeIterator(comptime all_components: anytype) type {
const EntitiesT = Entities(all_components);
return struct {
entities: *EntitiesT,
query: EntitiesT.Query,
index: usize,
const Self = @This();
pub fn init(entities: *EntitiesT, query: EntitiesT.Query) Self {
return Self{
.entities = entities,
.query = query,
.index = 0,
};
}
// TODO: all_components is a superset of queried items, not type-safe.
pub fn next(iter: *Self) ?comp.ArchetypeSlicer(all_components) {
while (iter.index < iter.entities.archetypes.items.len) {
const archetype = &iter.entities.archetypes.items[iter.index];
iter.index += 1;
if (iter.match(archetype)) return comp.ArchetypeSlicer(all_components){ .archetype = archetype };
}
return null;
}
pub fn match(iter: *Self, consideration: *Archetype) bool {
if (consideration.len == 0) return false;
var buf: [2048]u8 = undefined;
switch (iter.query) {
.all => {
for (iter.query.all) |namespace| {
switch (namespace) {
inline else => |components| {
for (components) |component| {
if (@typeInfo(@TypeOf(component)).Enum.fields.len == 0) continue;
const name = switch (component) {
inline else => |c| std.fmt.bufPrint(&buf, "{s}.{s}", .{ @tagName(namespace), @tagName(c) }) catch break,
};
const name_id = iter.entities.componentName(name);
var has_column = false;
for (consideration.columns) |column| {
if (column.name == name_id) {
has_column = true;
break;
}
}
if (!has_column) return false;
}
},
}
}
return true;
},
.any => @panic("TODO"),
}
}
};
}
test {
std.testing.refAllDeclsRecursive(Entities(.{}));
}
// TODO: require "one big registration of components" even when using dynamic API? Would alleviate
// some of the confusion about using world.componentName, and would perhaps improve GUI editor
// compatibility in practice.
test "dynamic" {
const allocator = testing.allocator;
const asBytes = std.mem.asBytes;
const Location = struct {
x: f32 = 0,
y: f32 = 0,
z: f32 = 0,
};
const Rotation = struct { degrees: f32 };
// Create a world.
var world = try Entities(.{}).init(allocator);
defer world.deinit();
// Create an entity and add dynamic components.
const player1 = try world.new();
try world.setComponentDynamic(player1, world.componentName("game.name"), "jane", @alignOf([]const u8), 100);
try world.setComponentDynamic(player1, world.componentName("game.name"), "joey", @alignOf([]const u8), 100);
try world.setComponentDynamic(player1, world.componentName("game.location"), asBytes(&Location{ .x = 1, .y = 2, .z = 3 }), @alignOf(Location), 101);
// Get components
try testing.expect(world.getComponentDynamic(player1, world.componentName("game.rotation"), @sizeOf(Rotation), @alignOf(Rotation), 102) == null);
const loc = world.getComponentDynamic(player1, world.componentName("game.location"), @sizeOf(Location), @alignOf(Location), 101);
try testing.expectEqual(Location{ .x = 1, .y = 2, .z = 3 }, std.mem.bytesToValue(Location, @as(*[12]u8, @ptrCast(loc.?.ptr))));
try testing.expectEqualStrings(world.getComponentDynamic(player1, world.componentName("game.name"), 4, @alignOf([]const u8), 100).?, "joey");
}
test "entity ID size" {
try testing.expectEqual(8, @sizeOf(EntityID));
}
test "example" {
const allocator = testing.allocator;
const Location = struct {
x: f32 = 0,
y: f32 = 0,
z: f32 = 0,
};
const Rotation = struct { degrees: f32 };
const all_components = .{
.entity = struct {
pub const id = EntityID;
},
.game = struct {
pub const location = Location;
pub const name = []const u8;
pub const rotation = Rotation;
},
};
//-------------------------------------------------------------------------
// Create a world.
var world = try Entities(all_components).init(allocator);
defer world.deinit();
//-------------------------------------------------------------------------
// Create first player entity.
const player1 = try world.new();
try world.setComponent(player1, .game, .name, "jane"); // add .name component
try world.setComponent(player1, .game, .name, "joe"); // update .name component
try world.setComponent(player1, .game, .location, .{}); // add .location component
// Create second player entity.
const player2 = try world.new();
try testing.expect(world.getComponent(player2, .game, .location) == null);
try testing.expect(world.getComponent(player2, .game, .name) == null);
//-------------------------------------------------------------------------
// We can add new components at will.
try world.setComponent(player2, .game, .rotation, .{ .degrees = 90 });
try world.setComponent(player2, .game, .rotation, .{ .degrees = 91 }); // update .rotation component
try testing.expect(world.getComponent(player1, .game, .rotation) == null); // player1 has no rotation
//-------------------------------------------------------------------------
// Remove a component from any entity at will.
// TODO: add a way to "cleanup" truly unused archetypes
try world.removeComponent(player1, .game, .name);
try world.removeComponent(player1, .game, .location);
// try world.removeComponent(player1, .game, .location); // doesn't exist? no problem.
//-------------------------------------------------------------------------
// Introspect things.
//
// Archetype IDs, these are our "table names" - they're just hashes of all the component names
// within the archetype table.
const archetypes = world.archetypes.items;
try testing.expectEqual(@as(usize, 5), archetypes.len);
// TODO: better table names, based on columns
// try testing.expectEqual(@as(u64, 0), archetypes[0].hash);
// try testing.expectEqual(@as(u32, 4), archetypes[1].name);
// try testing.expectEqual(@as(u32, 14), archetypes[2].name);
// try testing.expectEqual(@as(u32, 28), archetypes[3].name);
// try testing.expectEqual(@as(u32, 14), archetypes[4].name);
// Number of (living) entities stored in an archetype table.
try testing.expectEqual(@as(usize, 1), archetypes[0].len);
try testing.expectEqual(@as(usize, 0), archetypes[1].len);
try testing.expectEqual(@as(usize, 0), archetypes[2].len);
try testing.expectEqual(@as(usize, 1), archetypes[3].len);
// Resolve archetype by entity ID and print column names
const columns = world.archetypeByID(player2).columns;
try testing.expectEqual(@as(usize, 2), columns.len);
try testing.expectEqualStrings("id", world.component_names.string(columns[0].name));
try testing.expectEqualStrings("game.rotation", world.component_names.string(columns[1].name));
//-------------------------------------------------------------------------
// Query for archetypes that have all of the given components
var iter = world.query(.{ .all = &.{
.{ .game = &.{.rotation} },
} });
while (iter.next()) |archetype| {
const ids = archetype.slice(.entity, .id);
try testing.expectEqual(@as(usize, 1), ids.len);
try testing.expectEqual(player2, ids[0]);
}
// TODO: iterating components an entity has not currently supported.
//-------------------------------------------------------------------------
// Remove an entity whenever you wish. Just be sure not to try and use it later!
try world.remove(player1);
}
test "empty_world" {
const allocator = testing.allocator;
//-------------------------------------------------------------------------
var world = try Entities(.{}).init(allocator);
// Create a world.
defer world.deinit();
}
test "many entities" {
const allocator = testing.allocator;
const Location = struct {
x: f32 = 0,
y: f32 = 0,
z: f32 = 0,
};
const Rotation = struct { degrees: f32 };
const all_components = .{
.entity = struct {
pub const id = EntityID;
},
.game = struct {
pub const location = Location;
pub const name = []const u8;
pub const rotation = Rotation;
},
};
// Create many entities
var world = try Entities(all_components).init(allocator);
defer world.deinit();
for (0..8192) |_| {
const player = try world.new();
try world.setComponent(player, .game, .name, "jane");
try world.setComponent(player, .game, .location, .{});
}
// Confirm the number of archetypes created
const archetypes = world.archetypes.items;
try testing.expectEqual(@as(usize, 3), archetypes.len);
// Confirm archetypes
var columns = archetypes[0].columns;
try testing.expectEqual(@as(usize, 1), columns.len);
try testing.expectEqualStrings("id", world.component_names.string(columns[0].name));
columns = archetypes[1].columns;
try testing.expectEqual(@as(usize, 2), columns.len);
try testing.expectEqualStrings("id", world.component_names.string(columns[0].name));
try testing.expectEqualStrings("game.name", world.component_names.string(columns[1].name));
columns = archetypes[2].columns;
try testing.expectEqual(@as(usize, 3), columns.len);
try testing.expectEqualStrings("id", world.component_names.string(columns[0].name));
try testing.expectEqualStrings("game.name", world.component_names.string(columns[1].name));
try testing.expectEqualStrings("game.location", world.component_names.string(columns[2].name));
}

119
src/ecs/main.zig Normal file
View file

@ -0,0 +1,119 @@
//! mach/ecs is an Entity component system implementation.
//!
//! ## Design principles:
//!
//! * Initially a 100% clean-room implementation, working from first-principles. Later informed by
//! research into how other ECS work, with advice from e.g. Bevy and Flecs authors at different
//! points (thank you!)
//! * Solve the problems ECS solves, in a way that is natural to Zig and leverages Zig comptime.
//! * Fast. Optimal for CPU caches, multi-threaded, leverage comptime as much as is reasonable.
//! * Simple. Small API footprint, should be natural and fun - not like you're writing boilerplate.
//! * Enable other libraries to provide tracing, editors, visualizers, profilers, etc.
//!
const std = @import("std");
const testing = std.testing;
pub const EntityID = @import("entities.zig").EntityID;
pub const Entities = @import("entities.zig").Entities;
pub const Archetype = @import("Archetype.zig");
pub const Module = @import("modules.zig").Module;
pub const Modules = @import("modules.zig").Modules;
pub const World = @import("systems.zig").World;
// TODO:
// * Iteration
// * Querying
// * Multi threading
// * Multiple entities having one value
// * Sparse storage?
test "inclusion" {
std.testing.refAllDeclsRecursive(@This());
std.testing.refAllDeclsRecursive(@import("Archetype.zig"));
std.testing.refAllDeclsRecursive(@import("entities.zig"));
std.testing.refAllDeclsRecursive(@import("query.zig"));
std.testing.refAllDeclsRecursive(@import("StringTable.zig"));
std.testing.refAllDeclsRecursive(@import("systems.zig"));
std.testing.refAllDeclsRecursive(@import("modules.zig"));
}
test "example" {
const allocator = testing.allocator;
comptime var Renderer = type;
comptime var Physics = type;
Physics = Module(struct {
pointer: u8,
pub const name = .physics;
pub const components = struct {
pub const id = u32;
};
pub fn tick(physics: *World(.{ Renderer, Physics }).Mod(Physics)) !void {
_ = physics;
}
});
Renderer = Module(struct {
pub const name = .renderer;
pub const components = struct {
pub const id = u16;
};
pub fn tick(
physics: *World(.{ Renderer, Physics }).Mod(Physics),
renderer: *World(.{ Renderer, Physics }).Mod(Renderer),
) !void {
_ = renderer;
_ = physics;
}
});
//-------------------------------------------------------------------------
// Create a world.
var world = try World(.{ Renderer, Physics }).init(allocator);
defer world.deinit();
// Initialize module state.
var physics = &world.mod.physics;
var renderer = &world.mod.renderer;
physics.state = .{ .pointer = 123 };
_ = physics.state.pointer; // == 123
const player1 = try physics.newEntity();
const player2 = try physics.newEntity();
const player3 = try physics.newEntity();
try physics.set(player1, .id, 1001);
try renderer.set(player1, .id, 1001);
try physics.set(player2, .id, 1002);
try physics.set(player3, .id, 1003);
//-------------------------------------------------------------------------
// Querying
var iter = world.entities.query(.{ .all = &.{
.{ .physics = &.{.id} },
} });
var archetype = iter.next().?;
var ids = archetype.slice(.physics, .id);
try testing.expectEqual(@as(usize, 2), ids.len);
try testing.expectEqual(@as(usize, 1002), ids[0]);
try testing.expectEqual(@as(usize, 1003), ids[1]);
archetype = iter.next().?;
ids = archetype.slice(.physics, .id);
try testing.expectEqual(@as(usize, 1), ids.len);
try testing.expectEqual(@as(usize, 1001), ids[0]);
// TODO: can't write @as type here easily due to generic parameter, should be exposed
// ?comp.ArchetypeSlicer(all_components)
try testing.expectEqual(iter.next(), null);
//-------------------------------------------------------------------------
// Send events to modules
try world.send(null, .tick, .{});
}

166
src/ecs/modules.zig Normal file
View file

@ -0,0 +1,166 @@
const std = @import("std");
const testing = std.testing;
const StructField = std.builtin.Type.StructField;
const EntityID = @import("entities.zig").EntityID;
/// Verifies that T matches the expected layout of an ECS module
pub fn Module(comptime T: type) type {
if (@typeInfo(T) != .Struct) @compileError("Module must be a struct type. Found:" ++ @typeName(T));
if (!@hasDecl(T, "name")) @compileError("Module must have `pub const name = .foobar;`");
if (@typeInfo(@TypeOf(T.name)) != .EnumLiteral) @compileError("Module must have `pub const name = .foobar;`, found type:" ++ @typeName(T.name));
if (@hasDecl(T, "components")) {
if (@typeInfo(T.components) != .Struct) @compileError("Module.components must be `pub const components = struct { ... };`, found type:" ++ @typeName(T.components));
}
return T;
}
fn NamespacedComponents(comptime modules: anytype) type {
var fields: []const StructField = &[0]StructField{};
inline for (modules) |M| {
const components = if (@hasDecl(M, "components")) M.components else struct {};
fields = fields ++ [_]std.builtin.Type.StructField{.{
.name = @tagName(M.name),
.type = type,
.default_value = &components,
.is_comptime = true,
.alignment = @alignOf(@TypeOf(components)),
}};
}
// Builtin components
const entity_components = struct {
pub const id = EntityID;
};
fields = fields ++ [_]std.builtin.Type.StructField{.{
.name = "entity",
.type = type,
.default_value = &entity_components,
.is_comptime = true,
.alignment = @alignOf(@TypeOf(entity_components)),
}};
return @Type(.{
.Struct = .{
.layout = .Auto,
.is_tuple = false,
.fields = fields,
.decls = &[_]std.builtin.Type.Declaration{},
},
});
}
fn NamespacedState(comptime modules: anytype) type {
var fields: []const StructField = &[0]StructField{};
inline for (modules) |M| {
const state_fields = std.meta.fields(M);
const State = if (state_fields.len > 0) @Type(.{
.Struct = .{
.layout = .Auto,
.is_tuple = false,
.fields = state_fields,
.decls = &[_]std.builtin.Type.Declaration{},
},
}) else struct {};
fields = fields ++ [_]std.builtin.Type.StructField{.{
.name = @tagName(M.name),
.type = State,
.default_value = null,
.is_comptime = false,
.alignment = @alignOf(State),
}};
}
return @Type(.{
.Struct = .{
.layout = .Auto,
.is_tuple = false,
.fields = fields,
.decls = &[_]std.builtin.Type.Declaration{},
},
});
}
pub fn Modules(comptime mods: anytype) type {
inline for (mods) |M| _ = Module(M);
return struct {
pub const modules = mods;
pub const components = NamespacedComponents(mods){};
pub const State = NamespacedState(mods);
};
}
test "module" {
_ = Module(struct {
// Physics module state
pointer: usize,
// Globally unique module name
pub const name = .engine_physics;
/// Physics module components
pub const components = struct {
/// A location component
pub const location = @Vector(3, f32);
};
pub fn tick(adapter: anytype) void {
_ = adapter;
}
});
}
test "modules" {
const Physics = Module(struct {
// Physics module state
pointer: usize,
// Globally unique module name
pub const name = .engine_physics;
/// Physics module components
pub const components = struct {
/// A location component
pub const location = @Vector(3, f32);
};
pub fn tick(adapter: anytype) void {
_ = adapter;
}
});
const Renderer = Module(struct {
pub const name = .engine_renderer;
/// Renderer module components
pub const components = struct {};
pub fn tick(adapter: anytype) void {
_ = adapter;
}
});
const Sprite2D = Module(struct {
pub const name = .engine_sprite2d;
});
const modules = Modules(.{
Physics,
Renderer,
Sprite2D,
});
testing.refAllDeclsRecursive(modules);
testing.refAllDeclsRecursive(Physics);
testing.refAllDeclsRecursive(Renderer);
testing.refAllDeclsRecursive(Sprite2D);
// access namespaced components
try testing.expectEqual(Physics.components.location, modules.components.engine_physics.location);
try testing.expectEqual(Renderer.components, modules.components.engine_renderer);
// implicitly generated
_ = modules.components.entity.id;
Physics.tick(null);
}

116
src/ecs/query.zig Normal file
View file

@ -0,0 +1,116 @@
const std = @import("std");
const testing = std.testing;
pub const QueryTag = enum {
any,
all,
};
/// A complex query for entities matching a given criteria
pub fn Query(comptime all_components: anytype) type {
return union(QueryTag) {
/// Enum matching a namespace. e.g. `.game` or `.physics2d`
pub const Namespace = std.meta.FieldEnum(@TypeOf(all_components));
/// Enum matching a component within a namespace
/// e.g. `var a: Component(.physics2d) = .location`
pub fn Component(comptime namespace: Namespace) type {
const components = @field(all_components, @tagName(namespace));
if (@typeInfo(components).Struct.decls.len == 0) return enum {};
return std.meta.DeclEnum(components);
}
/// Slice of enums matching a component within a namespace
/// e.g. `&.{.location, .rotation}`
pub fn ComponentList(comptime namespace: Namespace) type {
return []const Component(namespace);
}
/// Tagged union of namespaces matching lists of components
/// e.g. `.physics2d = &.{ .location, .rotation }`
pub const NamespaceComponent = T: {
const namespaces = std.meta.fields(Namespace);
var fields: [namespaces.len]std.builtin.Type.UnionField = undefined;
for (namespaces, 0..) |namespace, i| {
const ns = std.meta.stringToEnum(Namespace, namespace.name).?;
fields[i] = .{
.name = namespace.name,
.type = ComponentList(ns),
.alignment = @alignOf(ComponentList(ns)),
};
}
break :T @Type(.{ .Union = .{
.layout = .Auto,
.tag_type = Namespace,
.fields = &fields,
.decls = &.{},
} });
};
/// Matches any of these components
any: []const NamespaceComponent,
/// Matches all of these components
all: []const NamespaceComponent,
};
}
test "query" {
const Location = struct {
x: f32 = 0,
y: f32 = 0,
z: f32 = 0,
};
const Rotation = struct { degrees: f32 };
const all_components = .{
.game = struct {
pub const name = []const u8;
},
.physics = struct {
pub const location = Location;
pub const rotation = Rotation;
},
.renderer = struct {},
};
const Q = Query(all_components);
// Namespace type lets us select a single namespace.
try testing.expectEqual(@as(Q.Namespace, .game), .game);
try testing.expectEqual(@as(Q.Namespace, .physics), .physics);
// Component type lets us select a single component within a namespace.
try testing.expectEqual(@as(Q.Component(.physics), .location), .location);
try testing.expectEqual(@as(Q.Component(.game), .name), .name);
// ComponentList type lets us select multiple components within a namespace.
const x: Q.ComponentList(.physics) = &.{
.location,
.rotation,
};
_ = x;
// NamespaceComponent lets us select multiple components within multiple namespaces.
const y: []const Q.NamespaceComponent = &.{
.{ .physics = &.{ .location, .rotation } },
.{ .game = &.{.name} },
};
_ = y;
// Query matching entities with *any* of these components
const z: Q = .{ .any = &.{
.{ .physics = &.{ .location, .rotation } },
.{ .game = &.{.name} },
} };
_ = z;
// Query matching entities with *all* of these components.
const w: Q = .{ .all = &.{
.{ .physics = &.{ .location, .rotation } },
.{ .game = &.{.name} },
} };
_ = w;
}

200
src/ecs/systems.zig Normal file
View file

@ -0,0 +1,200 @@
const std = @import("std");
const mem = std.mem;
const StructField = std.builtin.Type.StructField;
const Entities = @import("entities.zig").Entities;
const Modules = @import("modules.zig").Modules;
const EntityID = @import("entities.zig").EntityID;
const comp = @import("comptime.zig");
pub fn World(comptime mods: anytype) type {
const modules = Modules(mods);
return struct {
allocator: mem.Allocator,
entities: Entities(modules.components),
mod: Mods(),
const Self = @This();
pub fn Mod(comptime Module: anytype) type {
const module_tag = Module.name;
const State = @TypeOf(@field(@as(modules.State, undefined), @tagName(module_tag)));
const components = @field(modules.components, @tagName(module_tag));
return struct {
state: State,
entities: *Entities(modules.components),
allocator: mem.Allocator,
/// Sets the named component to the specified value for the given entity,
/// moving the entity from it's current archetype table to the new archetype
/// table if required.
pub inline fn set(
m: *@This(),
entity: EntityID,
comptime component_name: std.meta.DeclEnum(components),
component: @field(components, @tagName(component_name)),
) !void {
const mod_ptr: *Self.Mods() = @alignCast(@fieldParentPtr(Mods(), @tagName(module_tag), m));
const world = @fieldParentPtr(Self, "mod", mod_ptr);
try world.entities.setComponent(entity, module_tag, component_name, component);
}
/// gets the named component of the given type (which must be correct, otherwise undefined
/// behavior will occur). Returns null if the component does not exist on the entity.
pub inline fn get(
m: *@This(),
entity: EntityID,
comptime component_name: std.meta.DeclEnum(components),
) ?@field(components, @tagName(component_name)) {
const mod_ptr: *Self.Mods() = @alignCast(@fieldParentPtr(Mods(), @tagName(module_tag), m));
const world = @fieldParentPtr(Self, "mod", mod_ptr);
return world.entities.getComponent(entity, module_tag, component_name);
}
/// Removes the named component from the entity, or noop if it doesn't have such a component.
pub inline fn remove(
m: *@This(),
entity: EntityID,
comptime component_name: std.meta.DeclEnum(components),
) !void {
const mod_ptr: *Self.Mods() = @alignCast(@fieldParentPtr(Mods(), @tagName(module_tag), m));
const world = @fieldParentPtr(Self, "mod", mod_ptr);
try world.entities.removeComponent(entity, module_tag, component_name);
}
pub fn send(m: *@This(), comptime msg_tag: anytype, args: anytype) !void {
const mod_ptr: *Self.Mods() = @alignCast(@fieldParentPtr(Mods(), @tagName(module_tag), m));
const world = @fieldParentPtr(Self, "mod", mod_ptr);
return world.sendStr(module_tag, @tagName(msg_tag), args);
}
/// Returns a new entity.
pub fn newEntity(m: *@This()) !EntityID {
const mod_ptr: *Self.Mods() = @alignCast(@fieldParentPtr(Mods(), @tagName(module_tag), m));
const world = @fieldParentPtr(Self, "mod", mod_ptr);
return world.entities.new();
}
/// Removes an entity.
pub fn removeEntity(m: *@This(), entity: EntityID) !void {
const mod_ptr: *Self.Mods() = @alignCast(@fieldParentPtr(Mods(), @tagName(module_tag), m));
const world = @fieldParentPtr(Self, "mod", mod_ptr);
try world.entities.removeEntity(entity);
}
};
}
fn Mods() type {
var fields: []const StructField = &[0]StructField{};
inline for (modules.modules) |M| {
fields = fields ++ [_]std.builtin.Type.StructField{.{
.name = @tagName(M.name),
.type = Mod(M),
.default_value = null,
.is_comptime = false,
.alignment = @alignOf(Mod(M)),
}};
}
return @Type(.{
.Struct = .{
.layout = .Auto,
.is_tuple = false,
.fields = fields,
.decls = &[_]std.builtin.Type.Declaration{},
},
});
}
pub fn init(allocator: mem.Allocator) !Self {
return Self{
.allocator = allocator,
.entities = try Entities(modules.components).init(allocator),
.mod = undefined,
};
}
pub fn deinit(world: *Self) void {
world.entities.deinit();
}
/// Broadcasts an event to all modules that are subscribed to it.
///
/// The message tag corresponds with the handler method name to be invoked. For example,
/// if `send(.tick)` is invoked, all modules which declare a `pub fn tick` will be invoked.
///
/// Events sent by Mach itself, or the application itself, may be single words. To prevent
/// name conflicts, events sent by modules provided by a library should prefix their events
/// with their module name. For example, a module named `.ziglibs_imgui` should use event
/// names like `.ziglibsImguiClick`, `.ziglibsImguiFoobar`.
pub fn send(world: *Self, comptime optional_module_tag: anytype, comptime msg_tag: anytype, args: anytype) !void {
return world.sendStr(optional_module_tag, @tagName(msg_tag), args);
}
pub fn sendStr(world: *Self, comptime optional_module_tag: anytype, comptime msg: anytype, args: anytype) !void {
// Check for any module that has a handler function named msg (e.g. `fn init` would match "init")
inline for (modules.modules) |M| {
const EventHandlers = blk: {
switch (@typeInfo(@TypeOf(optional_module_tag))) {
.Null => break :blk M,
.EnumLiteral => {
// Send this message only to the specified module
if (M.name != optional_module_tag) continue;
if (!@hasDecl(M, "local")) @compileError("Module ." ++ @tagName(M.name) ++ " does not have a `pub const local` event handler for message ." ++ msg);
if (!@hasDecl(M.local, msg)) @compileError("Module ." ++ @tagName(M.name) ++ " does not have a `pub const local` event handler for message ." ++ msg);
break :blk M.local;
},
.Optional => if (optional_module_tag) |v| {
// Send this message only to the specified module
if (M.name != v) continue;
if (!@hasDecl(M, "local")) @compileError("Module ." ++ @tagName(M.name) ++ " does not have a `pub const local` event handler for message ." ++ msg);
if (!@hasDecl(M.local, msg)) @compileError("Module ." ++ @tagName(M.name) ++ " does not have a `pub const local` event handler for message ." ++ msg);
break :blk M.local;
},
else => @panic("unexpected optional_module_tag type: " ++ @typeName(@TypeOf(optional_module_tag))),
}
};
if (!@hasDecl(EventHandlers, msg)) continue;
// Determine which parameters the handler function wants. e.g.:
//
// pub fn init(eng: *mach.Engine) !void
// pub fn init(eng: *mach.Engine, mach: *mach.Engine.Mod) !void
//
const handler = @field(EventHandlers, msg);
// Build a tuple of parameters that we can pass to the function, based on what
// *mach.Mod(T) types it expects as arguments.
var params: std.meta.ArgsTuple(@TypeOf(handler)) = undefined;
comptime var argIndex = 0;
inline for (@typeInfo(@TypeOf(params)).Struct.fields) |param| {
comptime var found = false;
inline for (@typeInfo(Mods()).Struct.fields) |f| {
if (param.type == *f.type) {
// TODO: better initialization place for modules
@field(@field(world.mod, f.name), "entities") = &world.entities;
@field(@field(world.mod, f.name), "allocator") = world.allocator;
@field(params, param.name) = &@field(world.mod, f.name);
found = true;
break;
} else if (param.type == *Self) {
@field(params, param.name) = world;
found = true;
break;
} else if (param.type == f.type) {
@compileError("Module handler " ++ @tagName(M.name) ++ "." ++ msg ++ " should be *T not T: " ++ @typeName(param.type));
}
}
if (!found) {
@field(params, param.name) = args[argIndex];
argIndex += 1;
}
}
// Invoke the handler
try @call(.auto, handler, params);
}
}
};
}