earcut: switch from pointer linked-list to index linked-list
* Means we can use a MultiArrayList as the backing array, which solves the lifetime issue and enables reuse of the buffer for multiple polygon tesselations. * Improves performance. * Simplifies accesses, removes optionality except in necessary cases. Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
This commit is contained in:
parent
6a45971c6f
commit
8638ec246e
1 changed files with 309 additions and 279 deletions
|
|
@ -14,24 +14,33 @@ pub fn Processor(comptime T: type) type {
|
||||||
triangles: std.ArrayListUnmanaged(u32) = .{},
|
triangles: std.ArrayListUnmanaged(u32) = .{},
|
||||||
|
|
||||||
/// Internal node buffer.
|
/// Internal node buffer.
|
||||||
nodes: std.ArrayListUnmanaged(Node) = .{},
|
nodes: std.MultiArrayList(Node) = .{},
|
||||||
|
i: []u32 = &.{}, // node index -> vertex index in coordinates array
|
||||||
|
x: []T = &.{}, // node index -> x vertex coordinate
|
||||||
|
y: []T = &.{}, // node index -> y vertex coordinate
|
||||||
|
z: []T = &.{}, // node index -> z-order curve value
|
||||||
|
prev: []NodeIndex = &.{}, // node index -> prev node index in polygon ring
|
||||||
|
next: []NodeIndex = &.{}, // node index -> next node index in polygon ring
|
||||||
|
prev_z: []?NodeIndex = &.{}, // node index -> prev node index in z-order
|
||||||
|
next_z: []?NodeIndex = &.{}, // node index -> next node index in z-order
|
||||||
|
steiner: []bool = &.{}, // node index -> is this a steiner point?
|
||||||
|
|
||||||
|
const NodeIndex = u32;
|
||||||
|
|
||||||
pub fn deinit(processor: *@This(), allocator: Allocator) void {
|
pub fn deinit(processor: *@This(), allocator: Allocator) void {
|
||||||
processor.triangles.deinit(allocator);
|
processor.triangles.deinit(allocator);
|
||||||
|
|
||||||
// TODO: since nodes list is unused currently, this results in a big leak.
|
|
||||||
processor.nodes.deinit(allocator);
|
processor.nodes.deinit(allocator);
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn process(processor: *@This(), allocator: Allocator, data: []const T, hole_indices: ?[]const u32, dim: u3) error{OutOfMemory}!void {
|
pub fn process(p: *@This(), allocator: Allocator, data: []const T, hole_indices: ?[]const u32, dim: u3) error{OutOfMemory}!void {
|
||||||
processor.triangles.clearRetainingCapacity();
|
p.triangles.clearRetainingCapacity();
|
||||||
processor.nodes.clearRetainingCapacity();
|
p.nodes.shrinkRetainingCapacity(0);
|
||||||
|
|
||||||
var has_holes = hole_indices != null and hole_indices.?.len > 0;
|
var has_holes = hole_indices != null and hole_indices.?.len > 0;
|
||||||
var outer_len: u32 = if (has_holes) hole_indices.?[0] * dim else @intCast(u32, data.len);
|
var outer_len: u32 = if (has_holes) hole_indices.?[0] * dim else @intCast(u32, data.len);
|
||||||
var outer_node = try processor.linkedList(allocator, data, 0, outer_len, dim, true);
|
var outer_node = try p.linkedList(allocator, data, 0, outer_len, dim, true);
|
||||||
|
|
||||||
if (outer_node == null or outer_node.?.next == outer_node.?.prev) return;
|
if (outer_node == null or p.next[outer_node.?] == p.prev[outer_node.?]) return;
|
||||||
|
|
||||||
var min_x: T = undefined;
|
var min_x: T = undefined;
|
||||||
var min_y: T = undefined;
|
var min_y: T = undefined;
|
||||||
|
|
@ -41,7 +50,7 @@ pub fn Processor(comptime T: type) type {
|
||||||
var y: T = undefined;
|
var y: T = undefined;
|
||||||
var inv_size: T = 0;
|
var inv_size: T = 0;
|
||||||
|
|
||||||
if (has_holes) outer_node = try processor.eliminateHoles(allocator, data, hole_indices.?, outer_node, dim);
|
if (has_holes) outer_node = try p.eliminateHoles(allocator, data, hole_indices.?, outer_node, dim);
|
||||||
|
|
||||||
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
|
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
|
||||||
if (data.len > 80 * @intCast(usize, dim)) {
|
if (data.len > 80 * @intCast(usize, dim)) {
|
||||||
|
|
@ -65,103 +74,104 @@ pub fn Processor(comptime T: type) type {
|
||||||
inv_size = if (inv_size != 0) 32767 / inv_size else 0;
|
inv_size = if (inv_size != 0) 32767 / inv_size else 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (outer_node) |e| try processor.earcutLinked(allocator, e, &processor.triangles, dim, min_x, min_y, inv_size, 0);
|
if (outer_node) |e| try p.earcutLinked(allocator, e, &p.triangles, dim, min_x, min_y, inv_size, 0);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// create a circular doubly linked list from polygon points in the specified winding order
|
/// create a circular doubly linked list from polygon points in the specified winding order
|
||||||
fn linkedList(processor: *@This(), allocator: Allocator, data: []const T, start: u32, end: u32, dim: u3, clockwise: bool) error{OutOfMemory}!?*Node {
|
fn linkedList(p: *@This(), allocator: Allocator, data: []const T, start: u32, end: u32, dim: u3, clockwise: bool) error{OutOfMemory}!?NodeIndex {
|
||||||
var i: u32 = undefined;
|
var i: u32 = undefined;
|
||||||
var last: ?*Node = null;
|
var last: ?NodeIndex = null;
|
||||||
|
|
||||||
if (clockwise == (signedArea(data, start, end, dim) > 0)) {
|
if (clockwise == (signedArea(data, start, end, dim) > 0)) {
|
||||||
i = start;
|
i = start;
|
||||||
while (i < end) : (i += dim) last = try processor.insertNode(allocator, i, data[i], data[i + 1], last);
|
while (i < end) : (i += dim) last = try p.insertNode(allocator, i, data[i], data[i + 1], last);
|
||||||
} else {
|
} else {
|
||||||
i = end - dim;
|
i = end - dim;
|
||||||
while (i >= start) : (i -= dim) {
|
while (i >= start) : (i -= dim) {
|
||||||
last = try processor.insertNode(allocator, i, data[i], data[i + 1], last);
|
last = try p.insertNode(allocator, i, data[i], data[i + 1], last);
|
||||||
if (i == 0) break;
|
if (i == 0) break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (last != null and equals(last.?, last.?.next.?)) {
|
if (last != null and p.equals(last.?, p.next[last.?])) {
|
||||||
removeNode(last.?);
|
p.removeNode(last.?);
|
||||||
last = last.?.next.?;
|
last = p.next[last.?];
|
||||||
}
|
}
|
||||||
return last;
|
return last;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// eliminate colinear or duplicate points
|
/// eliminate colinear or duplicate points
|
||||||
fn filterPoints(start: ?*Node, end_in: ?*Node) ?*Node {
|
fn filterPoints(p: *@This(), start: ?NodeIndex, end_in: ?NodeIndex) ?NodeIndex {
|
||||||
if (start == null) return start;
|
if (start == null) return start;
|
||||||
var end = if (end_in) |e| e else start;
|
var end = if (end_in) |e| e else start.?;
|
||||||
|
|
||||||
var p = start;
|
var n = start.?;
|
||||||
var again = false;
|
var again = false;
|
||||||
while (true) {
|
while (true) {
|
||||||
again = false;
|
again = false;
|
||||||
|
|
||||||
if (!p.?.steiner and (equals(p.?, p.?.next.?) or area(p.?.prev.?, p.?, p.?.next.?) == 0)) {
|
if (!p.steiner[n] and (p.equals(n, p.next[n]) or p.area(p.prev[n], n, p.next[n]) == 0)) {
|
||||||
removeNode(p.?);
|
p.removeNode(n);
|
||||||
p = p.?.prev;
|
n = p.prev[n];
|
||||||
end = p.?.prev;
|
end = p.prev[n];
|
||||||
if (p == p.?.next) break;
|
if (n == p.next[n]) break;
|
||||||
again = true;
|
again = true;
|
||||||
} else {
|
} else {
|
||||||
p = p.?.next;
|
n = p.next[n];
|
||||||
}
|
}
|
||||||
if (again or p != end) break;
|
if (again or n != end) break;
|
||||||
}
|
}
|
||||||
|
|
||||||
return end;
|
return end;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// main ear slicing loop which triangulates a polygon (given as a linked list)
|
/// main ear slicing loop which triangulates a polygon (given as a linked list)
|
||||||
fn earcutLinked(processor: *@This(), allocator: Allocator, ear_in: *Node, triangles: *std.ArrayListUnmanaged(u32), dim: u3, min_x: T, min_y: T, inv_size: T, pass: u2) error{OutOfMemory}!void {
|
fn earcutLinked(p: *@This(), allocator: Allocator, ear_in: NodeIndex, triangles: *std.ArrayListUnmanaged(u32), dim: u3, min_x: T, min_y: T, inv_size: T, pass: u2) error{OutOfMemory}!void {
|
||||||
// interlink polygon nodes in z-order
|
// interlink polygon nodes in z-order
|
||||||
if (pass == 0 and inv_size != 0) indexCurve(ear_in, min_x, min_y, inv_size);
|
if (pass == 0 and inv_size != 0) p.indexCurve(ear_in, min_x, min_y, inv_size);
|
||||||
|
|
||||||
var ear: ?*Node = ear_in;
|
var ear = ear_in;
|
||||||
var stop = ear;
|
var stop = ear;
|
||||||
var prev: ?*Node = null;
|
var t_prev: NodeIndex = undefined;
|
||||||
var next: ?*Node = null;
|
var t_next: NodeIndex = undefined;
|
||||||
|
|
||||||
// iterate through ears, slicing them one by one
|
// iterate through ears, slicing them one by one
|
||||||
while (ear.?.prev != ear.?.next) {
|
while (p.prev[ear] != p.next[ear]) {
|
||||||
prev = ear.?.prev;
|
t_prev = p.prev[ear];
|
||||||
next = ear.?.next;
|
t_next = p.next[ear];
|
||||||
|
|
||||||
if (if (inv_size != 0) isEarHashed(ear.?, min_x, min_y, inv_size) else isEar(ear.?)) {
|
if (if (inv_size != 0) p.isEarHashed(ear, min_x, min_y, inv_size) else p.isEar(ear)) {
|
||||||
// cut off the triangle
|
// cut off the triangle
|
||||||
try triangles.append(allocator, prev.?.i / dim | 0);
|
try triangles.append(allocator, p.i[t_prev] / dim | 0);
|
||||||
try triangles.append(allocator, ear.?.i / dim | 0);
|
try triangles.append(allocator, p.i[ear] / dim | 0);
|
||||||
try triangles.append(allocator, next.?.i / dim | 0);
|
try triangles.append(allocator, p.i[t_next] / dim | 0);
|
||||||
|
|
||||||
removeNode(ear.?);
|
p.removeNode(ear);
|
||||||
|
|
||||||
// skipping the next vertex leads to less sliver triangles
|
// skipping the next vertex leads to less sliver triangles
|
||||||
ear = next.?.next;
|
ear = p.next[t_next];
|
||||||
stop = next.?.next;
|
stop = p.next[t_next];
|
||||||
|
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
ear = next;
|
ear = t_next;
|
||||||
|
|
||||||
// if we looped through the whole remaining polygon and can't find any more ears
|
// if we looped through the whole remaining polygon and can't find any more ears
|
||||||
if (ear == stop) {
|
if (ear == stop) {
|
||||||
// try filtering points and slicing again
|
// try filtering points and slicing again
|
||||||
if (pass == 0) {
|
if (pass == 0) {
|
||||||
if (filterPoints(ear, null)) |e| try processor.earcutLinked(allocator, e, triangles, dim, min_x, min_y, inv_size, 1);
|
if (p.filterPoints(ear, null)) |e| try p.earcutLinked(allocator, e, triangles, dim, min_x, min_y, inv_size, 1);
|
||||||
|
|
||||||
// if this didn't work, try curing all small self-intersections locally
|
// if this didn't work, try curing all small self-intersections locally
|
||||||
} else if (pass == 1) {
|
} else if (pass == 1) {
|
||||||
ear = try cureLocalIntersections(allocator, filterPoints(ear, null).?, triangles, dim);
|
const ear_maybe = try p.cureLocalIntersections(allocator, p.filterPoints(ear, null).?, triangles, dim);
|
||||||
if (ear) |e| try processor.earcutLinked(allocator, e, triangles, dim, min_x, min_y, inv_size, 2);
|
ear = ear_maybe.?; // TODO: can it actually return null?
|
||||||
|
try p.earcutLinked(allocator, ear, triangles, dim, min_x, min_y, inv_size, 2);
|
||||||
|
|
||||||
// as a last resort, try splitting the remaining polygon into two
|
// as a last resort, try splitting the remaining polygon into two
|
||||||
} else if (pass == 2) {
|
} else if (pass == 2) {
|
||||||
try processor.splitEarcut(allocator, ear.?, triangles, dim, min_x, min_y, inv_size);
|
try p.splitEarcut(allocator, ear, triangles, dim, min_x, min_y, inv_size);
|
||||||
}
|
}
|
||||||
|
|
||||||
break;
|
break;
|
||||||
|
|
@ -170,20 +180,20 @@ pub fn Processor(comptime T: type) type {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// check whether a polygon node forms a valid ear with adjacent nodes
|
/// check whether a polygon node forms a valid ear with adjacent nodes
|
||||||
fn isEar(ear: *Node) bool {
|
fn isEar(p: *@This(), ear: NodeIndex) bool {
|
||||||
var a = ear.prev.?;
|
var a = p.prev[ear];
|
||||||
var b = ear;
|
var b = ear;
|
||||||
var c = ear.next.?;
|
var c = p.next[ear];
|
||||||
|
|
||||||
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
if (p.area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
||||||
|
|
||||||
// now make sure we don't have other points inside the potential ear
|
// now make sure we don't have other points inside the potential ear
|
||||||
var ax = a.x;
|
var ax = p.x[a];
|
||||||
var bx = b.x;
|
var bx = p.x[b];
|
||||||
var cx = c.x;
|
var cx = p.x[c];
|
||||||
var ay = a.y;
|
var ay = p.y[a];
|
||||||
var by = b.y;
|
var by = p.y[b];
|
||||||
var cy = c.y;
|
var cy = p.y[c];
|
||||||
|
|
||||||
// triangle bbox; min & max are calculated like this for speed
|
// triangle bbox; min & max are calculated like this for speed
|
||||||
var x0 = if (ax < bx) (if (ax < cx) ax else cx) else (if (bx < cx) bx else cx);
|
var x0 = if (ax < bx) (if (ax < cx) ax else cx) else (if (bx < cx) bx else cx);
|
||||||
|
|
@ -191,30 +201,30 @@ pub fn Processor(comptime T: type) type {
|
||||||
var x1 = if (ax > bx) (if (ax > cx) ax else cx) else (if (bx > cx) bx else cx);
|
var x1 = if (ax > bx) (if (ax > cx) ax else cx) else (if (bx > cx) bx else cx);
|
||||||
var y1 = if (ay > by) (if (ay > cy) ay else cy) else (if (by > cy) by else cy);
|
var y1 = if (ay > by) (if (ay > cy) ay else cy) else (if (by > cy) by else cy);
|
||||||
|
|
||||||
var p = c.next;
|
var n = p.next[c];
|
||||||
while (p != a) {
|
while (n != a) {
|
||||||
if (p.?.x >= x0 and p.?.x <= x1 and p.?.y >= y0 and p.?.y <= y1 and
|
if (p.x[n] >= x0 and p.x[n] <= x1 and p.y[n] >= y0 and p.y[n] <= y1 and
|
||||||
pointInTriangle(ax, ay, bx, by, cx, cy, p.?.x, p.?.y) and
|
pointInTriangle(ax, ay, bx, by, cx, cy, p.x[n], p.y[n]) and
|
||||||
area(p.?.prev.?, p.?, p.?.next.?) >= 0) return false;
|
p.area(p.prev[n], n, p.next[n]) >= 0) return false;
|
||||||
p = p.?.next;
|
n = p.next[n];
|
||||||
}
|
}
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
fn isEarHashed(ear: *Node, min_x: T, min_y: T, inv_size: T) bool {
|
fn isEarHashed(p: *@This(), ear: NodeIndex, min_x: T, min_y: T, inv_size: T) bool {
|
||||||
var a = ear.prev.?;
|
var a = p.prev[ear];
|
||||||
var b = ear;
|
var b = ear;
|
||||||
var c = ear.next.?;
|
var c = p.next[ear];
|
||||||
|
|
||||||
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
if (p.area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
||||||
|
|
||||||
var ax = a.x;
|
var ax = p.x[a];
|
||||||
var bx = b.x;
|
var bx = p.x[b];
|
||||||
var cx = c.x;
|
var cx = p.x[c];
|
||||||
var ay = a.y;
|
var ay = p.y[a];
|
||||||
var by = b.y;
|
var by = p.y[b];
|
||||||
var cy = c.y;
|
var cy = p.y[c];
|
||||||
|
|
||||||
// triangle bbox; min & max are calculated like this for speed
|
// triangle bbox; min & max are calculated like this for speed
|
||||||
var x0 = if (ax < bx) (if (ax < cx) ax else cx) else (if (bx < cx) bx else cx);
|
var x0 = if (ax < bx) (if (ax < cx) ax else cx) else (if (bx < cx) bx else cx);
|
||||||
|
|
@ -226,94 +236,96 @@ pub fn Processor(comptime T: type) type {
|
||||||
var min_z = zOrder(x0, y0, min_x, min_y, inv_size);
|
var min_z = zOrder(x0, y0, min_x, min_y, inv_size);
|
||||||
var max_z = zOrder(x1, y1, min_x, min_y, inv_size);
|
var max_z = zOrder(x1, y1, min_x, min_y, inv_size);
|
||||||
|
|
||||||
var p = ear.prev_z;
|
var p2 = p.prev_z[ear];
|
||||||
var n = ear.next_z;
|
var n = p.next_z[ear];
|
||||||
|
|
||||||
// look for points inside the triangle in both directions
|
// look for points inside the triangle in both directions
|
||||||
while (p != null and p.?.z >= min_z and n != null and n.?.z <= max_z) {
|
while (p2 != null and p.z[p2.?] >= min_z and n != null and p.z[n.?] <= max_z) {
|
||||||
if (p.?.x >= x0 and p.?.x <= x1 and p.?.y >= y0 and p.?.y <= y1 and p != a and p != c and
|
if (p.x[p2.?] >= x0 and p.x[p2.?] <= x1 and p.y[p2.?] >= y0 and p.y[p2.?] <= y1 and p2 != a and p2 != c and
|
||||||
pointInTriangle(ax, ay, bx, by, cx, cy, p.?.x, p.?.y) and area(p.?.prev.?, p.?, p.?.next.?) >= 0) return false;
|
pointInTriangle(ax, ay, bx, by, cx, cy, p.x[p2.?], p.y[p2.?]) and p.area(p.prev[p2.?], p2.?, p.next[p2.?]) >= 0) return false;
|
||||||
p = p.?.prev_z;
|
p2 = p.prev_z[p2.?];
|
||||||
|
|
||||||
if (n.?.x >= x0 and n.?.x <= x1 and n.?.y >= y0 and n.?.y <= y1 and n != a and n != c and
|
if (p.x[n.?] >= x0 and p.x[n.?] <= x1 and p.y[n.?] >= y0 and p.y[n.?] <= y1 and n != a and n != c and
|
||||||
pointInTriangle(ax, ay, bx, by, cx, cy, n.?.x, n.?.y) and area(n.?.prev.?, n.?, n.?.next.?) >= 0) return false;
|
pointInTriangle(ax, ay, bx, by, cx, cy, p.x[n.?], p.y[n.?]) and p.area(p.prev[n.?], n.?, p.next[n.?]) >= 0) return false;
|
||||||
n = n.?.next_z;
|
n = p.next_z[n.?];
|
||||||
}
|
}
|
||||||
|
|
||||||
// look for remaining points in decreasing z-order
|
// look for remaining points in decreasing z-order
|
||||||
while (p != null and p.?.z >= min_z) {
|
while (p2 != null and p.z[p2.?] >= min_z) {
|
||||||
if (p.?.x >= x0 and p.?.x <= x1 and p.?.y >= y0 and p.?.y <= y1 and p != a and p != c and
|
if (p.x[p2.?] >= x0 and p.x[p2.?] <= x1 and p.y[p2.?] >= y0 and p.y[p2.?] <= y1 and p2 != a and p2 != c and
|
||||||
pointInTriangle(ax, ay, bx, by, cx, cy, p.?.x, p.?.y) and area(p.?.prev.?, p.?, p.?.next.?) >= 0) return false;
|
pointInTriangle(ax, ay, bx, by, cx, cy, p.x[p2.?], p.y[p2.?]) and p.area(p.prev[p2.?], p2.?, p.next[p2.?]) >= 0) return false;
|
||||||
p = p.?.prev_z;
|
p2 = p.prev_z[p2.?];
|
||||||
}
|
}
|
||||||
|
|
||||||
// look for remaining points in increasing z-order
|
// look for remaining points in increasing z-order
|
||||||
while (n != null and n.?.z <= max_z) {
|
while (n != null and p.z[n.?] <= max_z) {
|
||||||
if (n.?.x >= x0 and n.?.x <= x1 and n.?.y >= y0 and n.?.y <= y1 and n != a and n != c and
|
if (p.x[n.?] >= x0 and p.x[n.?] <= x1 and p.y[n.?] >= y0 and p.y[n.?] <= y1 and n != a and n != c and
|
||||||
pointInTriangle(ax, ay, bx, by, cx, cy, n.?.x, n.?.y) and area(n.?.prev.?, n.?, n.?.next.?) >= 0) return false;
|
pointInTriangle(ax, ay, bx, by, cx, cy, p.x[n.?], p.y[n.?]) and p.area(p.prev[n.?], n.?, p.next[n.?]) >= 0) return false;
|
||||||
n = n.?.next_z;
|
n = p.next_z[n.?];
|
||||||
}
|
}
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// go through all polygon nodes and cure small local self-intersections
|
/// go through all polygon nodes and cure small local self-intersections
|
||||||
fn cureLocalIntersections(allocator: Allocator, start_in: *Node, triangles: *std.ArrayListUnmanaged(u32), dim: u3) error{OutOfMemory}!?*Node {
|
fn cureLocalIntersections(p: *@This(), allocator: Allocator, start_in: NodeIndex, triangles: *std.ArrayListUnmanaged(u32), dim: u3) error{OutOfMemory}!?NodeIndex {
|
||||||
var start = start_in;
|
var start = start_in;
|
||||||
var p = start;
|
var n = start;
|
||||||
while (true) {
|
while (true) {
|
||||||
var a = p.prev.?;
|
var a = p.prev[n];
|
||||||
var b = p.next.?.next.?;
|
var b = p.next[p.next[n]];
|
||||||
|
|
||||||
if (!equals(a, b) and intersects(a, p, p.next.?, b) and locallyInside(a, b) and locallyInside(b, a)) {
|
if (!p.equals(a, b) and p.intersects(a, n, p.next[n], b) and p.locallyInside(a, b) and p.locallyInside(b, a)) {
|
||||||
try triangles.append(allocator, a.i / dim | 0);
|
try triangles.append(allocator, p.i[a] / dim | 0);
|
||||||
try triangles.append(allocator, p.i / dim | 0);
|
try triangles.append(allocator, p.i[n] / dim | 0);
|
||||||
try triangles.append(allocator, b.i / dim | 0);
|
try triangles.append(allocator, p.i[b] / dim | 0);
|
||||||
|
|
||||||
// remove two nodes involved
|
// remove two nodes involved
|
||||||
removeNode(p);
|
p.removeNode(n);
|
||||||
removeNode(p.next.?);
|
p.removeNode(p.next[n]);
|
||||||
|
|
||||||
p = b;
|
n = b;
|
||||||
start = b;
|
start = b;
|
||||||
}
|
}
|
||||||
p = p.next.?;
|
n = p.next[n];
|
||||||
if (p != start) break;
|
if (n != start) break;
|
||||||
}
|
}
|
||||||
|
|
||||||
return filterPoints(p, null);
|
return p.filterPoints(n, null);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// try splitting polygon into two and triangulate them independently
|
/// try splitting polygon into two and triangulate them independently
|
||||||
fn splitEarcut(processor: *@This(), allocator: Allocator, start: *Node, triangles: *std.ArrayListUnmanaged(u32), dim: u3, min_x: T, min_y: T, inv_size: T) error{OutOfMemory}!void {
|
fn splitEarcut(p: *@This(), allocator: Allocator, start: NodeIndex, triangles: *std.ArrayListUnmanaged(u32), dim: u3, min_x: T, min_y: T, inv_size: T) error{OutOfMemory}!void {
|
||||||
// look for a valid diagonal that divides the polygon into two
|
// look for a valid diagonal that divides the polygon into two
|
||||||
var a = start;
|
var a = start;
|
||||||
while (true) {
|
while (true) {
|
||||||
var b = a.next.?.next;
|
var b = p.next[p.next[a]];
|
||||||
while (b != a.prev) {
|
while (b != p.prev[a]) {
|
||||||
if (a.i != b.?.i and isValidDiagonal(a, b.?)) {
|
if (p.i[a] != p.i[b] and p.isValidDiagonal(a, b)) {
|
||||||
// split the polygon in two by the diagonal
|
// split the polygon in two by the diagonal
|
||||||
var c = try processor.splitPolygon(allocator, a, b.?);
|
var c = try p.splitPolygon(allocator, a, b);
|
||||||
|
|
||||||
// filter colinear points around the cuts
|
// filter colinear points around the cuts
|
||||||
a = filterPoints(a, a.next).?;
|
a = p.filterPoints(a, p.next[a]).?;
|
||||||
c = filterPoints(c, c.next).?;
|
c = p.filterPoints(c, p.next[c]).?;
|
||||||
|
|
||||||
// run earcut on each half
|
// run earcut on each half
|
||||||
try processor.earcutLinked(allocator, a, triangles, dim, min_x, min_y, inv_size, 0);
|
try p.earcutLinked(allocator, a, triangles, dim, min_x, min_y, inv_size, 0);
|
||||||
try processor.earcutLinked(allocator, c, triangles, dim, min_x, min_y, inv_size, 0);
|
try p.earcutLinked(allocator, c, triangles, dim, min_x, min_y, inv_size, 0);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
b = b.?.next.?;
|
b = p.next[b];
|
||||||
}
|
}
|
||||||
a = a.next.?;
|
a = p.next[a];
|
||||||
if (a != start) break;
|
if (a != start) break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// link every hole into the outer loop, producing a single-ring polygon without holes
|
/// link every hole into the outer loop, producing a single-ring polygon without holes
|
||||||
fn eliminateHoles(processor: *@This(), allocator: Allocator, data: []const T, hole_indices: []const u32, outer_node_in: ?*Node, dim: u3) error{OutOfMemory}!?*Node {
|
fn eliminateHoles(p: *@This(), allocator: Allocator, data: []const T, hole_indices: []const u32, outer_node_in: ?NodeIndex, dim: u3) error{OutOfMemory}!?NodeIndex {
|
||||||
var queue = std.ArrayListUnmanaged(*Node){};
|
if (hole_indices.len == 0) return null;
|
||||||
|
// TODO: save/reuse this buffer.
|
||||||
|
var queue = std.ArrayListUnmanaged(NodeIndex){};
|
||||||
defer queue.deinit(allocator);
|
defer queue.deinit(allocator);
|
||||||
var start: u32 = undefined;
|
var start: u32 = undefined;
|
||||||
var end: u32 = undefined;
|
var end: u32 = undefined;
|
||||||
|
|
@ -323,63 +335,63 @@ pub fn Processor(comptime T: type) type {
|
||||||
while (i < len) : (i += 1) {
|
while (i < len) : (i += 1) {
|
||||||
start = hole_indices[i] * dim;
|
start = hole_indices[i] * dim;
|
||||||
end = if (i < len - 1) hole_indices[i + 1] * dim else @intCast(u32, data.len);
|
end = if (i < len - 1) hole_indices[i + 1] * dim else @intCast(u32, data.len);
|
||||||
const list = try processor.linkedList(allocator, data, start, end, dim, false);
|
const list_maybe = try p.linkedList(allocator, data, start, end, dim, false);
|
||||||
if (list == list.?.next) list.?.steiner = true;
|
const list = list_maybe.?; // TODO: if returns null, assertion would fail
|
||||||
try queue.append(allocator, getLeftmost(list.?));
|
if (list == p.next[list]) p.steiner[list] = true;
|
||||||
|
try queue.append(allocator, p.getLeftmost(list));
|
||||||
}
|
}
|
||||||
|
|
||||||
std.sort.sort(*Node, queue.items, {}, compareX);
|
std.sort.sort(NodeIndex, queue.items, p, compareX);
|
||||||
|
|
||||||
// process holes from left to right
|
// process holes from left to right
|
||||||
i = 0;
|
i = 0;
|
||||||
var outer_node = outer_node_in;
|
var outer_node = outer_node_in;
|
||||||
while (i < queue.items.len) : (i += 1) {
|
while (i < queue.items.len) : (i += 1) {
|
||||||
outer_node = try processor.eliminateHole(allocator, queue.items[i], outer_node.?);
|
outer_node = try p.eliminateHole(allocator, queue.items[i], outer_node.?); // TODO: if outer_node_in == null, this assertion would fail?
|
||||||
}
|
}
|
||||||
|
|
||||||
return outer_node;
|
return outer_node;
|
||||||
}
|
}
|
||||||
|
|
||||||
fn compareX(context: void, lhs: *Node, rhs: *Node) bool {
|
fn compareX(p: *@This(), lhs: NodeIndex, rhs: NodeIndex) bool {
|
||||||
_ = context;
|
return (p.x[lhs] - p.x[rhs]) < 0;
|
||||||
return (lhs.x - rhs.x) < 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// find a bridge between vertices that connects hole with an outer ring and and link it
|
/// find a bridge between vertices that connects hole with an outer ring and and link it
|
||||||
fn eliminateHole(processor: *@This(), allocator: Allocator, hole: *Node, outer_node: *Node) error{OutOfMemory}!?*Node {
|
fn eliminateHole(p: *@This(), allocator: Allocator, hole: NodeIndex, outer_node: NodeIndex) error{OutOfMemory}!?NodeIndex {
|
||||||
var bridge = findHoleBridge(hole, outer_node);
|
var bridge = p.findHoleBridge(hole, outer_node);
|
||||||
if (bridge == null) {
|
if (bridge == null) {
|
||||||
return outer_node;
|
return outer_node;
|
||||||
}
|
}
|
||||||
|
|
||||||
var bridge_reverse = try processor.splitPolygon(allocator, bridge.?, hole);
|
var bridge_reverse = try p.splitPolygon(allocator, bridge.?, hole);
|
||||||
|
|
||||||
// filter collinear points around the cuts
|
// filter collinear points around the cuts
|
||||||
_ = filterPoints(bridge_reverse, bridge_reverse.next); // TODO: is this ineffective?
|
_ = p.filterPoints(bridge_reverse, p.next[bridge_reverse]); // TODO: is this ineffective?
|
||||||
return filterPoints(bridge, bridge.?.next);
|
return p.filterPoints(bridge, p.next[bridge.?]);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// David Eberly's algorithm for finding a bridge between hole and outer polygon
|
/// David Eberly's algorithm for finding a bridge between hole and outer polygon
|
||||||
fn findHoleBridge(hole: *Node, outer_node: *Node) ?*Node {
|
fn findHoleBridge(p: *@This(), hole: NodeIndex, outer_node: NodeIndex) ?NodeIndex {
|
||||||
var p = outer_node;
|
var n = outer_node;
|
||||||
var hx = hole.x;
|
var hx = p.x[hole];
|
||||||
var hy = hole.y;
|
var hy = p.y[hole];
|
||||||
var qx = -inf(T);
|
var qx = -inf(T);
|
||||||
var m: ?*Node = null;
|
var m: ?NodeIndex = null;
|
||||||
|
|
||||||
// find a segment intersected by a ray from the hole's leftmost point to the left;
|
// find a segment intersected by a ray from the hole's leftmost point to the left;
|
||||||
// segment's endpoint with lesser x will be potential connection point
|
// segment's endpoint with lesser x will be potential connection point
|
||||||
while (true) {
|
while (true) {
|
||||||
if (hy <= p.y and hy >= p.next.?.y and p.next.?.y != p.y) {
|
if (hy <= p.y[n] and hy >= p.y[p.next[n]] and p.y[p.next[n]] != p.y[n]) {
|
||||||
var x = p.x + (hy - p.y) * (p.next.?.x - p.x) / (p.next.?.y - p.y);
|
var x = p.x[n] + (hy - p.y[n]) * (p.x[p.next[n]] - p.x[n]) / (p.y[p.next[n]] - p.y[n]);
|
||||||
if (x <= hx and x > qx) {
|
if (x <= hx and x > qx) {
|
||||||
qx = x;
|
qx = x;
|
||||||
m = if (p.x < p.next.?.x) p else p.next.?;
|
m = if (p.x[n] < p.x[p.next[n]]) n else p.next[n];
|
||||||
if (x == hx) return m; // hole touches outer segment; pick leftmost endpoint
|
if (x == hx) return m; // hole touches outer segment; pick leftmost endpoint
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
p = p.next.?;
|
n = p.next[n];
|
||||||
if (p != outer_node) break;
|
if (n != outer_node) break;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (m == null) return null;
|
if (m == null) return null;
|
||||||
|
|
@ -388,110 +400,110 @@ pub fn Processor(comptime T: type) type {
|
||||||
// if there are no points found, we have a valid connection;
|
// if there are no points found, we have a valid connection;
|
||||||
// otherwise choose the point of the minimum angle with the ray as connection point
|
// otherwise choose the point of the minimum angle with the ray as connection point
|
||||||
|
|
||||||
var stop = m;
|
var stop = m.?;
|
||||||
var mx = m.?.x;
|
var mx = p.x[m.?];
|
||||||
var my = m.?.y;
|
var my = p.y[m.?];
|
||||||
var tan_min = inf(T);
|
var tan_min = inf(T);
|
||||||
var tan: T = 0;
|
var tan: T = 0;
|
||||||
|
|
||||||
p = m.?;
|
n = m.?;
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
if (hx >= p.x and p.x >= mx and hx != p.x and
|
if (hx >= p.x[n] and p.x[n] >= mx and hx != p.x[n] and
|
||||||
pointInTriangle(if (hy < my) hx else qx, hy, mx, my, if (hy < my) qx else hx, hy, p.x, p.y))
|
pointInTriangle(if (hy < my) hx else qx, hy, mx, my, if (hy < my) qx else hx, hy, p.x[n], p.y[n]))
|
||||||
{
|
{
|
||||||
tan = @fabs(hy - p.y) / (hx - p.x); // tangential
|
tan = @fabs(hy - p.y[n]) / (hx - p.x[n]); // tangential
|
||||||
|
|
||||||
if (locallyInside(p, hole) and
|
if (p.locallyInside(n, hole) and
|
||||||
(tan < tan_min or (tan == tan_min and (p.x > m.?.x or (p.x == m.?.x and sectorContainsSector(m.?, p))))))
|
(tan < tan_min or (tan == tan_min and (p.x[n] > p.x[m.?] or (p.x[n] == p.x[m.?] and p.sectorContainsSector(m.?, n))))))
|
||||||
{
|
{
|
||||||
m = p;
|
m = n;
|
||||||
tan_min = tan;
|
tan_min = tan;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
p = p.next.?;
|
n = p.next[n];
|
||||||
if (p != stop) break;
|
if (n != stop) break;
|
||||||
}
|
}
|
||||||
|
|
||||||
return m;
|
return m;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// whether sector in vertex m contains sector in vertex p in the same coordinates
|
/// whether sector in vertex m contains sector in vertex p in the same coordinates
|
||||||
fn sectorContainsSector(m: *Node, p: *Node) bool {
|
fn sectorContainsSector(p: *@This(), m: NodeIndex, n: NodeIndex) bool {
|
||||||
return area(m.prev.?, m, p.prev.?) < 0 and area(p.next.?, m, m.next.?) < 0;
|
return p.area(p.prev[m], m, p.prev[n]) < 0 and p.area(p.next[n], m, p.next[m]) < 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// interlink polygon nodes in z-order
|
/// interlink polygon nodes in z-order
|
||||||
fn indexCurve(start: *Node, min_x: T, min_y: T, inv_size: T) void {
|
fn indexCurve(p: *@This(), start: NodeIndex, min_x: T, min_y: T, inv_size: T) void {
|
||||||
var p = start;
|
var n = start;
|
||||||
while (true) {
|
while (true) {
|
||||||
if (p.z == 0) p.z = zOrder(p.x, p.y, min_x, min_y, inv_size);
|
if (p.z[n] == 0) p.z[n] = zOrder(p.x[n], p.y[n], min_x, min_y, inv_size);
|
||||||
p.prev_z = p.prev;
|
p.prev_z[n] = p.prev[n];
|
||||||
p.next_z = p.next;
|
p.next_z[n] = p.next[n];
|
||||||
p = p.next.?;
|
n = p.next[n];
|
||||||
if (p != start) break;
|
if (n != start) break;
|
||||||
}
|
}
|
||||||
|
|
||||||
p.prev_z.?.next_z = null;
|
p.next_z[p.prev_z[n].?] = null;
|
||||||
p.prev_z = null;
|
p.prev_z[n] = null;
|
||||||
|
|
||||||
_ = sortLinked(p);
|
_ = p.sortLinked(n);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Simon Tatham's linked list merge sort algorithm
|
/// Simon Tatham's linked list merge sort algorithm
|
||||||
/// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
|
/// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
|
||||||
fn sortLinked(list_in: *Node) ?*Node {
|
fn sortLinked(p: *@This(), list_in: NodeIndex) ?NodeIndex {
|
||||||
var list: ?*Node = list_in;
|
var list: ?NodeIndex = list_in;
|
||||||
var i: usize = undefined;
|
var i: usize = undefined;
|
||||||
var p: ?*Node = null;
|
var n: ?NodeIndex = null;
|
||||||
var q: ?*Node = null;
|
var q: ?NodeIndex = null;
|
||||||
var e: ?*Node = null;
|
var e: ?NodeIndex = null;
|
||||||
var tail: ?*Node = null;
|
var tail: ?NodeIndex = null;
|
||||||
var num_merges: usize = 0;
|
var num_merges: usize = 0;
|
||||||
var p_size: usize = 0;
|
var n_size: usize = 0;
|
||||||
var q_size: usize = 0;
|
var q_size: usize = 0;
|
||||||
var in_size: usize = 1;
|
var in_size: usize = 1;
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
p = list;
|
n = list;
|
||||||
list = null;
|
list = null;
|
||||||
tail = null;
|
tail = null;
|
||||||
num_merges = 0;
|
num_merges = 0;
|
||||||
|
|
||||||
while (p != null) {
|
while (n != null) {
|
||||||
num_merges += 1;
|
num_merges += 1;
|
||||||
q = p;
|
q = n;
|
||||||
p_size = 0;
|
n_size = 0;
|
||||||
i = 0;
|
i = 0;
|
||||||
while (i < in_size) : (i += 1) {
|
while (i < in_size) : (i += 1) {
|
||||||
p_size += 1;
|
n_size += 1;
|
||||||
q = q.?.next_z;
|
q = p.next_z[q.?];
|
||||||
if (q == null) break;
|
if (q == null) break;
|
||||||
}
|
}
|
||||||
q_size = in_size;
|
q_size = in_size;
|
||||||
|
|
||||||
while (p_size > 0 or (q_size > 0 and q != null)) {
|
while (n_size > 0 or (q_size > 0 and q != null)) {
|
||||||
if (p_size != 0 and (q_size == 0 or q == null or p.?.z <= q.?.z)) {
|
if (n_size != 0 and (q_size == 0 or q == null or p.z[n.?] <= p.z[q.?])) {
|
||||||
e = p;
|
e = n;
|
||||||
p = p.?.next_z;
|
n = p.next_z[n.?];
|
||||||
p_size -= 1;
|
n_size -= 1;
|
||||||
} else {
|
} else {
|
||||||
e = q;
|
e = q;
|
||||||
q = q.?.next_z;
|
q = p.next_z[q.?];
|
||||||
q_size -= 1;
|
q_size -= 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (tail != null) tail.?.next_z = e else list = e;
|
if (tail != null) p.next_z[tail.?] = e else list = e;
|
||||||
|
|
||||||
e.?.prev_z = tail;
|
p.prev_z[e.?] = tail;
|
||||||
tail = e;
|
tail = e;
|
||||||
}
|
}
|
||||||
|
|
||||||
p = q;
|
n = q;
|
||||||
}
|
}
|
||||||
|
|
||||||
tail.?.next_z = null;
|
p.next_z[tail.?] = null;
|
||||||
in_size *= 2;
|
in_size *= 2;
|
||||||
if (num_merges > 1) break;
|
if (num_merges > 1) break;
|
||||||
}
|
}
|
||||||
|
|
@ -519,13 +531,15 @@ pub fn Processor(comptime T: type) type {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// find the leftmost node of a polygon ring
|
/// find the leftmost node of a polygon ring
|
||||||
fn getLeftmost(start: *Node) *Node {
|
fn getLeftmost(p: *@This(), start: NodeIndex) NodeIndex {
|
||||||
var p = start;
|
var n = start;
|
||||||
var leftmost = start;
|
var leftmost = start;
|
||||||
while (true) {
|
while (true) {
|
||||||
if (p.x < leftmost.x or (p.x == leftmost.x and p.y < leftmost.y)) leftmost = p;
|
if (p.x[n] < p.x[leftmost] or (p.x[n] == p.x[leftmost] and p.y[n] < p.y[leftmost])) {
|
||||||
p = p.next.?;
|
leftmost = n;
|
||||||
if (p != start) break;
|
}
|
||||||
|
n = p.next[n];
|
||||||
|
if (n != start) break;
|
||||||
}
|
}
|
||||||
return leftmost;
|
return leftmost;
|
||||||
}
|
}
|
||||||
|
|
@ -538,77 +552,77 @@ pub fn Processor(comptime T: type) type {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
|
/// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
|
||||||
fn isValidDiagonal(a: *Node, b: *Node) bool {
|
fn isValidDiagonal(p: *@This(), a: NodeIndex, b: NodeIndex) bool {
|
||||||
return a.next.?.i != b.i and a.prev.?.i != b.i and !intersectsPolygon(a, b) and // dones't intersect other edges
|
return p.i[p.next[a]] != p.i[b] and p.i[p.prev[a]] != p.i[b] and !p.intersectsPolygon(a, b) and // dones't intersect other edges
|
||||||
(locallyInside(a, b) and locallyInside(b, a) and middleInside(a, b) and // locally visible
|
(p.locallyInside(a, b) and p.locallyInside(b, a) and p.middleInside(a, b) and // locally visible
|
||||||
(area(a.prev.?, a, b.prev.?) != 0 or area(a, b.prev.?, b) != 0) or // does not create opposite-facing sectors
|
(p.area(p.prev[a], a, p.prev[b]) != 0 or p.area(a, p.prev[b], b) != 0) or // does not create opposite-facing sectors
|
||||||
equals(a, b) and area(a.prev.?, a, a.next.?) > 0 and area(b.prev.?, b, b.next.?) > 0); // special zero-length case
|
p.equals(a, b) and p.area(p.prev[a], a, p.next[a]) > 0 and p.area(p.prev[b], b, p.next[b]) > 0); // special zero-length case
|
||||||
}
|
}
|
||||||
|
|
||||||
/// signed area of a triangle
|
/// signed area of a triangle
|
||||||
fn area(p: *Node, q: *Node, r: *Node) T {
|
inline fn area(p: *@This(), n: NodeIndex, q: NodeIndex, r: NodeIndex) T {
|
||||||
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
|
return (p.y[q] - p.y[n]) * (p.x[r] - p.x[q]) - (p.x[q] - p.x[n]) * (p.y[r] - p.y[q]);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// check if two points are equal
|
/// check if two points are equal
|
||||||
fn equals(p1: *Node, p2: *Node) bool {
|
inline fn equals(p: *@This(), p1: NodeIndex, p2: NodeIndex) bool {
|
||||||
return p1.x == p2.x and p1.y == p2.y;
|
return p.x[p1] == p.x[p2] and p.y[p1] == p.y[p2];
|
||||||
}
|
}
|
||||||
|
|
||||||
/// check if two segments intersect
|
/// check if two segments intersect
|
||||||
fn intersects(p1: *Node, q1: *Node, p2: *Node, q2: *Node) bool {
|
fn intersects(p: *@This(), p1: NodeIndex, q1: NodeIndex, p2: NodeIndex, q2: NodeIndex) bool {
|
||||||
var o1 = sign(area(p1, q1, p2));
|
var o1 = sign(p.area(p1, q1, p2));
|
||||||
var o2 = sign(area(p1, q1, q2));
|
var o2 = sign(p.area(p1, q1, q2));
|
||||||
var o3 = sign(area(p2, q2, p1));
|
var o3 = sign(p.area(p2, q2, p1));
|
||||||
var o4 = sign(area(p2, q2, q1));
|
var o4 = sign(p.area(p2, q2, q1));
|
||||||
|
|
||||||
if (o1 != o2 and o3 != o4) return true; // general case
|
if (o1 != o2 and o3 != o4) return true; // general case
|
||||||
|
|
||||||
if (o1 == 0 and onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
|
if (o1 == 0 and p.onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
|
||||||
if (o2 == 0 and onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
|
if (o2 == 0 and p.onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
|
||||||
if (o3 == 0 and onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
|
if (o3 == 0 and p.onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
|
||||||
if (o4 == 0 and onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
|
if (o4 == 0 and p.onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
|
||||||
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// for collinear points p, q, r, check if point q lies on segment pr
|
/// for collinear points p, q, r, check if point q lies on segment pr
|
||||||
fn onSegment(p: *Node, q: *Node, r: *Node) bool {
|
inline fn onSegment(p: *@This(), n: NodeIndex, q: NodeIndex, r: NodeIndex) bool {
|
||||||
return q.x <= max(p.x, r.x) and q.x >= min(p.x, r.x) and q.y <= max(p.y, r.y) and q.y >= min(p.y, r.y);
|
return p.x[q] <= max(p.x[n], p.x[r]) and p.x[q] >= min(p.x[n], p.x[r]) and p.y[q] <= max(p.y[n], p.y[r]) and p.y[q] >= min(p.y[n], p.y[r]);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// check if a polygon diagonal intersects any polygon segments
|
/// check if a polygon diagonal intersects any polygon segments
|
||||||
fn intersectsPolygon(a: *Node, b: *Node) bool {
|
fn intersectsPolygon(p: *@This(), a: NodeIndex, b: NodeIndex) bool {
|
||||||
var p = a;
|
var n = a;
|
||||||
while (true) {
|
while (true) {
|
||||||
if (p.i != a.i and p.next.?.i != a.i and p.i != b.i and p.next.?.i != b.i and
|
if (p.i[n] != p.i[a] and p.i[p.next[n]] != p.i[a] and p.i[n] != p.i[b] and p.i[p.next[n]] != p.i[b] and
|
||||||
intersects(p, p.next.?, a, b)) return true;
|
p.intersects(n, p.next[n], a, b)) return true;
|
||||||
p = p.next.?;
|
n = p.next[n];
|
||||||
if (p != a) break;
|
if (n != a) break;
|
||||||
}
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// check if a polygon diagonal is locally inside the polygon
|
/// check if a polygon diagonal is locally inside the polygon
|
||||||
fn locallyInside(a: *Node, b: *Node) bool {
|
fn locallyInside(p: *@This(), a: NodeIndex, b: NodeIndex) bool {
|
||||||
return if (area(a.prev.?, a, a.next.?) < 0)
|
return if (p.area(p.prev[a], a, p.next[a]) < 0)
|
||||||
area(a, b, a.next.?) >= 0 and area(a, a.prev.?, b) >= 0
|
p.area(a, b, p.next[a]) >= 0 and p.area(a, p.prev[a], b) >= 0
|
||||||
else
|
else
|
||||||
area(a, b, a.prev.?) < 0 or area(a, a.next.?, b) < 0;
|
p.area(a, b, p.prev[a]) < 0 or p.area(a, p.next[a], b) < 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// check if the middle point of a polygon diagonal is inside the polygon
|
/// check if the middle point of a polygon diagonal is inside the polygon
|
||||||
fn middleInside(a: *Node, b: *Node) bool {
|
fn middleInside(p: *@This(), a: NodeIndex, b: NodeIndex) bool {
|
||||||
var p = a;
|
var n = a;
|
||||||
var inside = false;
|
var inside = false;
|
||||||
var px = (a.x + b.x) / 2.0;
|
var px = (p.x[a] + p.x[b]) / 2.0;
|
||||||
var py = (a.y + b.y) / 2.0;
|
var py = (p.y[a] + p.y[b]) / 2.0;
|
||||||
while (true) {
|
while (true) {
|
||||||
if (((p.y > py) != (p.next.?.y > py)) and p.next.?.y != p.y and
|
if (((p.y[n] > py) != (p.y[p.next[n]] > py)) and p.y[p.next[n]] != p.y[n] and
|
||||||
(px < (p.next.?.x - p.x) * (py - p.y) / (p.next.?.y - p.y) + p.x))
|
(px < (p.x[p.next[n]] - p.x[n]) * (py - p.y[n]) / (p.y[p.next[n]] - p.y[n]) + p.x[n]))
|
||||||
inside = !inside;
|
inside = !inside;
|
||||||
p = p.next.?;
|
n = p.next[n];
|
||||||
if (p != a) break;
|
if (n != a) break;
|
||||||
}
|
}
|
||||||
return inside;
|
return inside;
|
||||||
}
|
}
|
||||||
|
|
@ -616,59 +630,75 @@ pub fn Processor(comptime T: type) type {
|
||||||
/// link two polygon vertices with a bridge; if the vertices belong the same ring, it splits
|
/// link two polygon vertices with a bridge; if the vertices belong the same ring, it splits
|
||||||
/// polygon into two; if one belongs to the outer ring and another to a hole, it merges it
|
/// polygon into two; if one belongs to the outer ring and another to a hole, it merges it
|
||||||
/// into a single ring.
|
/// into a single ring.
|
||||||
fn splitPolygon(processor: *@This(), allocator: Allocator, a: *Node, b: *Node) error{OutOfMemory}!*Node {
|
fn splitPolygon(p: *@This(), allocator: Allocator, a: NodeIndex, b: NodeIndex) error{OutOfMemory}!NodeIndex {
|
||||||
var a2 = try processor.initNode(allocator, a.i, a.x, a.y);
|
var b2 = @intCast(NodeIndex, p.nodes.len + 1);
|
||||||
var b2 = try processor.initNode(allocator, b.i, b.x, b.y);
|
var a2 = try p.initNode(allocator, .{ // a2
|
||||||
var an = a.next;
|
.i = p.i[a],
|
||||||
var bp = b.prev;
|
.x = p.x[a],
|
||||||
|
.y = p.y[a],
|
||||||
a.next = b;
|
.next = p.next[a],
|
||||||
b.prev = a;
|
.prev = b2,
|
||||||
|
});
|
||||||
a2.next = an;
|
_ = try p.initNode(allocator, .{ // b2
|
||||||
an.?.prev = a2;
|
.i = p.i[b],
|
||||||
|
.x = p.x[b],
|
||||||
b2.next = a2;
|
.y = p.y[b],
|
||||||
a2.prev = b2;
|
.next = a2,
|
||||||
|
.prev = p.prev[b],
|
||||||
bp.?.next = b2;
|
});
|
||||||
b2.prev = bp;
|
p.next[a] = b;
|
||||||
|
p.prev[b] = a;
|
||||||
|
p.prev[p.next[a]] = a2;
|
||||||
|
p.next[p.prev[b]] = b2;
|
||||||
return b2;
|
return b2;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// create a node and optionally link it with previous one (in a circular doubly linked list)
|
/// create a node and optionally link it with previous one (in a circular doubly linked list)
|
||||||
fn insertNode(processor: *@This(), allocator: Allocator, i: u32, x: T, y: T, last: ?*Node) error{OutOfMemory}!*Node {
|
fn insertNode(p: *@This(), allocator: Allocator, i: u32, x: T, y: T, last: ?NodeIndex) error{OutOfMemory}!NodeIndex {
|
||||||
var p = try processor.initNode(allocator, i, x, y);
|
const new_node = @intCast(NodeIndex, p.nodes.len);
|
||||||
if (last != null) {
|
if (last) |l| {
|
||||||
p.next = last.?.next;
|
_ = try p.initNode(allocator, .{
|
||||||
p.prev = last.?;
|
.i = i,
|
||||||
last.?.next.?.prev = p;
|
.x = x,
|
||||||
last.?.next = p;
|
.y = y,
|
||||||
|
.next = p.next[l],
|
||||||
|
.prev = l,
|
||||||
|
});
|
||||||
|
p.prev[p.next[l]] = new_node;
|
||||||
|
p.next[l] = new_node;
|
||||||
} else {
|
} else {
|
||||||
p.prev = p;
|
_ = try p.initNode(allocator, .{
|
||||||
p.next = p;
|
.i = i,
|
||||||
|
.x = x,
|
||||||
|
.y = y,
|
||||||
|
.prev = new_node,
|
||||||
|
.next = new_node,
|
||||||
|
});
|
||||||
}
|
}
|
||||||
return p;
|
return new_node;
|
||||||
}
|
}
|
||||||
|
|
||||||
fn removeNode(p: *Node) void {
|
fn removeNode(p: *@This(), n: NodeIndex) void {
|
||||||
p.next.?.prev = p.prev;
|
p.prev[p.next[n]] = p.prev[n];
|
||||||
p.prev.?.next = p.next;
|
p.next[p.prev[n]] = p.next[n];
|
||||||
if (p.prev_z) |prev_z| prev_z.next_z = p.next_z;
|
if (p.prev_z[n]) |prev_z| p.next_z[prev_z] = p.next_z[n];
|
||||||
if (p.next_z) |next_z| next_z.prev_z = p.prev_z;
|
if (p.next_z[n]) |next_z| p.prev_z[next_z] = p.prev_z[n];
|
||||||
}
|
}
|
||||||
|
|
||||||
fn initNode(processor: *@This(), allocator: Allocator, i: u32, x: T, y: T) error{OutOfMemory}!*Node {
|
fn initNode(p: *@This(), allocator: Allocator, n: Node) error{OutOfMemory}!NodeIndex {
|
||||||
// TODO: make use of processor.nodes list for allocation.
|
try p.nodes.append(allocator, n);
|
||||||
_ = processor;
|
|
||||||
var n = try allocator.create(Node);
|
const slice = p.nodes.slice();
|
||||||
n.* = .{
|
p.i = slice.items(.i);
|
||||||
.i = i,
|
p.x = slice.items(.x);
|
||||||
.x = x,
|
p.y = slice.items(.y);
|
||||||
.y = y,
|
p.z = slice.items(.z);
|
||||||
};
|
p.prev = slice.items(.prev);
|
||||||
return n;
|
p.next = slice.items(.next);
|
||||||
|
p.prev_z = slice.items(.prev_z);
|
||||||
|
p.next_z = slice.items(.next_z);
|
||||||
|
p.steiner = slice.items(.steiner);
|
||||||
|
return @intCast(NodeIndex, p.nodes.len - 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
const Node = struct {
|
const Node = struct {
|
||||||
|
|
@ -679,16 +709,16 @@ pub fn Processor(comptime T: type) type {
|
||||||
y: T,
|
y: T,
|
||||||
|
|
||||||
// previous and next vertex nodes in a polygon ring
|
// previous and next vertex nodes in a polygon ring
|
||||||
prev: ?*Node = null,
|
prev: NodeIndex,
|
||||||
next: ?*Node = null,
|
next: NodeIndex,
|
||||||
|
|
||||||
|
// previous and next nodes in z-order
|
||||||
|
prev_z: ?NodeIndex = null,
|
||||||
|
next_z: ?NodeIndex = null,
|
||||||
|
|
||||||
// z-order curve value
|
// z-order curve value
|
||||||
z: T = 0,
|
z: T = 0,
|
||||||
|
|
||||||
// previous and next nodes in z-order
|
|
||||||
prev_z: ?*Node = null,
|
|
||||||
next_z: ?*Node = null,
|
|
||||||
|
|
||||||
// indicates whether this is a steiner point
|
// indicates whether this is a steiner point
|
||||||
steiner: bool = false,
|
steiner: bool = false,
|
||||||
};
|
};
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue