examples: created gkurve example

This commit is contained in:
PiergiorgioZagaria 2022-05-08 19:13:40 +02:00 committed by Stephen Gutekanst
parent ddf8704559
commit a1daf399a3
4 changed files with 404 additions and 0 deletions

123
examples/gkurve/frag.wgsl Executable file
View file

@ -0,0 +1,123 @@
//! Ported from https://www.shadertoy.com/view/ltXSDB
// Signed Distance to a Quadratic Bezier Curve
// - Adam Simmons (@adamjsimmons) 2015
//
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
//
// Inspired by http://www.pouet.net/topic.php?which=9119
// and various shaders by iq, T21, and demofox
//
// I needed the -signed- distance to a quadratic bezier
// curve but couldn't find any examples online that
// were both fast and precise. This is my solution.
//
// v1 - Initial release
// v2 - Faster and more robust sign computation
//
struct FragUniform {
points: array<vec4<f32>, 3>,
type_: u32,
}
@binding(1) @group(0) var<uniform> ubos : array<FragUniform, 3>;
// Test if point p crosses line (a, b), returns sign of result
fn testCross(a:vec2<f32>, b:vec2<f32>, p:vec2<f32>) -> f32{
return sign((b.y - a.y) * (p.x - a.x) - (b.x - a.x) * (p.y - a.y));
}
// Determine which side we're on (using barycentric parameterization)
fn signBezier(A: vec2<f32>, B: vec2<f32>, C: vec2<f32>, p:vec2<f32>) -> f32 {
let a = C - A;
let b = B - A;
let c = p - A;
let bary = vec2(c.x * b.y - b.x * c.y, a.x * c.y - c.x * a.y) / (a.x * b.y - b.x * a.y);
let d = vec2(bary.y * 0.5, 0.0) + 1.0 - bary.x - bary.y;
return mix(sign(d.x * d.x - d.y), mix(-1.0, 1.0,
step(testCross(A, B, p) * testCross(B, C, p), 0.0)),
step((d.x - d.y), 0.0)) * testCross(A, C, B);
}
// Solve cubic equation for roots
fn solveCubic(a: f32, b: f32, c: f32) -> vec3<f32> {
let p = b - a * a / 3.0;
let p3 = p * p * p;
let q = a * (2.0 * a * a - 9.0 * b) / 27.0 + c;
let d = q * q + 4.0 * p3 / 27.0;
let offset = -a / 3.0;
if(d >= 0.0) {
let z = sqrt(d);
let x = (vec2(z, -z) - q) / 2.0;
let uv = sign(x) * pow(abs(x), vec2(1.0 / 3.0));
return vec3(offset + uv.x + uv.y);
}
let v = acos(-sqrt(-27.0 / p3) * q / 2.0) / 3.0;
let m = cos(v);
let n = sin(v) * 1.732050808;
return vec3(m + m, -n - m, n - m) * sqrt(-p / 3.0) + offset;
}
// Find the signed distance from a point to a bezier curve
fn sdBezier(A: vec2<f32>, B_: vec2<f32>,C: vec2<f32>,p: vec2<f32>) -> f32{
let B = mix(B_ + vec2(1e-4), B_, abs(sign(B_ * 2.0 - A - C)));
let a = B - A;
let b = A - B * 2.0 + C;
let c = a * 2.0;
let d = A - p;
let k = vec3(3.0 * dot(a,b), 2.0 * dot(a,a) + dot(d,b), dot(d,a)) / dot(b,b);
let t = clamp(solveCubic(k.x, k.y, k.z), vec3(0.0), vec3(1.0));
var pos = A + (c + b * t.x) * t.x;
var dis = length(pos - p);
pos = A + (c + b * t.y) * t.y;
dis = min(dis, length(pos - p));
pos = A + (c + b * t.z) * t.z;
dis = min(dis, length(pos - p));
return dis * signBezier(A, B, C, p);
}
@stage(fragment) fn main(
@location(0) uv : vec2<f32>,
@interpolate(flat) @location(1) instance_index: u32,
) -> @location(0) vec4<f32> {
var col = vec4<f32>(0.0);
let p = uv;
// Define the control points of our curve
var A = ubos[instance_index].points[0].xy;
var B = ubos[instance_index].points[1].xy;
var C = ubos[instance_index].points[2].xy;
if(ubos[instance_index].type_ == 2u){
let tmp = A;
A.x = C.x;
A.y = B.y;
C.y = B.y;
B.y = tmp.y;
C.x = tmp.x;
}
// Render the control points
// var d = min(distance(p, A),min(distance(p, C),distance(p,B)));
// if (d < 0.04) {
// return vec4(1.0 - smoothstep(0.025, 0.034, d));
// }
// Get the signed distance to bezier curve
let d = sdBezier(A, B, C, p);
let tex_col = vec4(0.0,1.0,0.0,0.0);
// Visualize the distance field using iq's orange/blue scheme
if (ubos[instance_index].type_ == 1u){
col = tex_col;
}else{
col = sign(d) * tex_col;
}
return col;
}

258
examples/gkurve/main.zig Normal file
View file

@ -0,0 +1,258 @@
// TODO:
// - add texture and sampler.
// - find a way to use dynamic arrays in wgsl for ubos
// - understand how to move the triangles via matrix multplication
const std = @import("std");
const mach = @import("mach");
const gpu = @import("gpu");
const zm = @import("zmath");
const glfw = @import("glfw");
pub const Vertex = struct {
pos: @Vector(4, f32),
uv: @Vector(2, f32),
};
// Simple triangle
pub const vertices = [_]Vertex{
.{ .pos = .{ 0, 0.5, 0, 1 }, .uv = .{ 0.5, 1 } },
.{ .pos = .{ -0.5, -0.5, 0, 1 }, .uv = .{ 0, 0 } },
.{ .pos = .{ 0.5, -0.5, 0, 1 }, .uv = .{ 1, 0 } },
};
// The uniform read by the vertex shader, it contains the matrix
// that will move vertices
const VertexUniform = struct {
mat: zm.Mat,
};
// The uniform read by the fragment shader, the points are used
// to calculate the bezier curve, and more or less coincide with uvs
// (Vec4 for alignment)
const FragUniform = struct {
points: [3]@Vector(4, f32),
// TODO use an enum? Remember that it will be casted to u32 in wgsl
type: u32,
};
// TODO texture and sampler, create buffers and use an index field
// in FragUniform to tell which texture to read
// Hard-coded, if you change it remember to change it in the shaders
const num_instances = 3;
const App = @This();
pipeline: gpu.RenderPipeline,
queue: gpu.Queue,
vertex_buffer: gpu.Buffer,
vertex_uniform_buffer: gpu.Buffer,
frag_uniform_buffer: gpu.Buffer,
bind_group: gpu.BindGroup,
pub fn init(app: *App, engine: *mach.Engine) !void {
engine.core.internal.window.setKeyCallback(struct {
fn callback(window: glfw.Window, key: glfw.Key, scancode: i32, action: glfw.Action, mods: glfw.Mods) void {
_ = scancode;
_ = mods;
if (action == .press) {
switch (key) {
.space => window.setShouldClose(true),
else => {},
}
}
}
}.callback);
try engine.core.internal.window.setSizeLimits(.{ .width = 20, .height = 20 }, .{ .width = null, .height = null });
const vs_module = engine.gpu_driver.device.createShaderModule(&.{
.label = "my vertex shader",
.code = .{ .wgsl = @embedFile("vert.wgsl") },
});
const vertex_attributes = [_]gpu.VertexAttribute{
.{ .format = .float32x4, .offset = @offsetOf(Vertex, "pos"), .shader_location = 0 },
.{ .format = .float32x2, .offset = @offsetOf(Vertex, "uv"), .shader_location = 1 },
};
const vertex_buffer_layout = gpu.VertexBufferLayout{
.array_stride = @sizeOf(Vertex),
.step_mode = .vertex,
.attribute_count = vertex_attributes.len,
.attributes = &vertex_attributes,
};
const fs_module = engine.gpu_driver.device.createShaderModule(&.{
.label = "my fragment shader",
.code = .{ .wgsl = @embedFile("frag.wgsl") },
});
// Fragment state
const color_target = gpu.ColorTargetState{
.format = engine.gpu_driver.swap_chain_format,
.blend = null,
.write_mask = gpu.ColorWriteMask.all,
};
const fragment = gpu.FragmentState{
.module = fs_module,
.entry_point = "main",
.targets = &.{color_target},
.constants = null,
};
const vbgle = gpu.BindGroupLayout.Entry.buffer(0, .{ .vertex = true }, .uniform, true, 0);
const fbgle = gpu.BindGroupLayout.Entry.buffer(1, .{ .fragment = true }, .uniform, true, 0);
const bgl = engine.gpu_driver.device.createBindGroupLayout(
&gpu.BindGroupLayout.Descriptor{
.entries = &.{ vbgle, fbgle },
},
);
const bind_group_layouts = [_]gpu.BindGroupLayout{bgl};
const pipeline_layout = engine.gpu_driver.device.createPipelineLayout(&.{
.bind_group_layouts = &bind_group_layouts,
});
const pipeline_descriptor = gpu.RenderPipeline.Descriptor{
.fragment = &fragment,
.layout = pipeline_layout,
.depth_stencil = null,
.vertex = .{
.module = vs_module,
.entry_point = "main",
.buffers = &.{vertex_buffer_layout},
},
.multisample = .{
.count = 1,
.mask = 0xFFFFFFFF,
.alpha_to_coverage_enabled = false,
},
.primitive = .{
.front_face = .ccw,
.cull_mode = .none,
.topology = .triangle_list,
.strip_index_format = .none,
},
};
const vertex_buffer = engine.gpu_driver.device.createBuffer(&.{
.usage = .{ .vertex = true },
.size = @sizeOf(Vertex) * vertices.len,
.mapped_at_creation = true,
});
var vertex_mapped = vertex_buffer.getMappedRange(Vertex, 0, vertices.len);
std.mem.copy(Vertex, vertex_mapped, vertices[0..]);
vertex_buffer.unmap();
const vertex_uniform_buffer = engine.gpu_driver.device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(VertexUniform) * num_instances,
.mapped_at_creation = false,
});
const frag_uniform_buffer = engine.gpu_driver.device.createBuffer(&.{
.usage = .{ .uniform = true },
.size = @sizeOf(FragUniform) * num_instances,
.mapped_at_creation = true,
});
var frag_uniform_mapped = frag_uniform_buffer.getMappedRange(FragUniform, 0, num_instances);
const tmp_frag_ubo = [_]FragUniform{
.{
// The points correspond to the left point, middle point, right point (when viewed regularly)
// in UV coordinates
.points = [_]@Vector(4, f32){
.{ 0, 0, 0, 0 },
.{ 0.5, 1, 0, 0 },
.{ 1, 0, 0, 0 },
},
.type = 1,
},
.{
.points = [_]@Vector(4, f32){
.{ 0, 0, 0, 0 },
.{ 0.5, 1, 0, 0 },
.{ 1, 0, 0, 0 },
},
.type = 0,
},
.{
.points = [_]@Vector(4, f32){
.{ 0, 0, 0, 0 },
.{ 0.5, 1, 0, 0 },
.{ 1, 0, 0, 0 },
},
.type = 2,
},
};
std.mem.copy(FragUniform, frag_uniform_mapped, &tmp_frag_ubo);
frag_uniform_buffer.unmap();
const bind_group = engine.gpu_driver.device.createBindGroup(
&gpu.BindGroup.Descriptor{
.layout = bgl,
.entries = &.{
gpu.BindGroup.Entry.buffer(0, vertex_uniform_buffer, 0, @sizeOf(VertexUniform) * num_instances),
gpu.BindGroup.Entry.buffer(1, frag_uniform_buffer, 0, @sizeOf(FragUniform) * num_instances),
},
},
);
app.pipeline = engine.gpu_driver.device.createRenderPipeline(&pipeline_descriptor);
app.queue = engine.gpu_driver.device.getQueue();
app.vertex_buffer = vertex_buffer;
app.vertex_uniform_buffer = vertex_uniform_buffer;
app.frag_uniform_buffer = frag_uniform_buffer;
app.bind_group = bind_group;
vs_module.release();
fs_module.release();
pipeline_layout.release();
bgl.release();
}
pub fn deinit(app: *App, _: *mach.Engine) void {
app.vertex_buffer.release();
app.vertex_uniform_buffer.release();
app.frag_uniform_buffer.release();
app.bind_group.release();
}
pub fn update(app: *App, engine: *mach.Engine) !bool {
const back_buffer_view = engine.gpu_driver.swap_chain.?.getCurrentTextureView();
const color_attachment = gpu.RenderPassColorAttachment{
.view = back_buffer_view,
.resolve_target = null,
.clear_value = std.mem.zeroes(gpu.Color),
.load_op = .clear,
.store_op = .store,
};
const encoder = engine.gpu_driver.device.createCommandEncoder(null);
const render_pass_info = gpu.RenderPassEncoder.Descriptor{
.color_attachments = &.{color_attachment},
};
{
// TODO:
// Use better positioning system
const ubos = [_]VertexUniform{
.{ .mat = zm.translation(0.5, 0.5, 0) },
.{ .mat = zm.translation(-0.5, 0, 0) },
.{ .mat = zm.translation(0.5, -0.5, 0) },
};
encoder.writeBuffer(app.vertex_uniform_buffer, 0, VertexUniform, &ubos);
}
const pass = encoder.beginRenderPass(&render_pass_info);
pass.setPipeline(app.pipeline);
pass.setVertexBuffer(0, app.vertex_buffer, 0, @sizeOf(Vertex) * vertices.len);
pass.setBindGroup(0, app.bind_group, &.{ 0, 0 });
pass.draw(vertices.len, num_instances, 0, 0);
pass.end();
pass.release();
var command = encoder.finish(null);
encoder.release();
app.queue.submit(&.{command});
command.release();
engine.gpu_driver.swap_chain.?.present();
back_buffer_view.release();
return true;
}

22
examples/gkurve/vert.wgsl Normal file
View file

@ -0,0 +1,22 @@
struct VertexUniform {
matrix: mat4x4<f32>,
}
@binding(0) @group(0) var<uniform> ubos : array<VertexUniform, 3>;
struct VertexOut {
@builtin(position) position_clip : vec4<f32>,
@location(0) frag_uv : vec2<f32>,
@interpolate(flat) @location(1) instance_index: u32,
}
@stage(vertex) fn main(
@builtin(instance_index) instanceIdx : u32,
@location(0) position: vec4<f32>,
@location(1) uv: vec2<f32>,
) -> VertexOut {
var output : VertexOut;
output.position_clip = ubos[instanceIdx].matrix * position;
output.frag_uv = uv;
output.instance_index = instanceIdx;
return output;
}