examples: created gkurve example
This commit is contained in:
parent
ddf8704559
commit
a1daf399a3
4 changed files with 404 additions and 0 deletions
123
examples/gkurve/frag.wgsl
Executable file
123
examples/gkurve/frag.wgsl
Executable file
|
|
@ -0,0 +1,123 @@
|
|||
//! Ported from https://www.shadertoy.com/view/ltXSDB
|
||||
|
||||
// Signed Distance to a Quadratic Bezier Curve
|
||||
// - Adam Simmons (@adamjsimmons) 2015
|
||||
//
|
||||
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
|
||||
//
|
||||
// Inspired by http://www.pouet.net/topic.php?which=9119
|
||||
// and various shaders by iq, T21, and demofox
|
||||
//
|
||||
// I needed the -signed- distance to a quadratic bezier
|
||||
// curve but couldn't find any examples online that
|
||||
// were both fast and precise. This is my solution.
|
||||
//
|
||||
// v1 - Initial release
|
||||
// v2 - Faster and more robust sign computation
|
||||
//
|
||||
|
||||
struct FragUniform {
|
||||
points: array<vec4<f32>, 3>,
|
||||
type_: u32,
|
||||
}
|
||||
@binding(1) @group(0) var<uniform> ubos : array<FragUniform, 3>;
|
||||
|
||||
// Test if point p crosses line (a, b), returns sign of result
|
||||
fn testCross(a:vec2<f32>, b:vec2<f32>, p:vec2<f32>) -> f32{
|
||||
return sign((b.y - a.y) * (p.x - a.x) - (b.x - a.x) * (p.y - a.y));
|
||||
}
|
||||
|
||||
// Determine which side we're on (using barycentric parameterization)
|
||||
fn signBezier(A: vec2<f32>, B: vec2<f32>, C: vec2<f32>, p:vec2<f32>) -> f32 {
|
||||
let a = C - A;
|
||||
let b = B - A;
|
||||
let c = p - A;
|
||||
let bary = vec2(c.x * b.y - b.x * c.y, a.x * c.y - c.x * a.y) / (a.x * b.y - b.x * a.y);
|
||||
let d = vec2(bary.y * 0.5, 0.0) + 1.0 - bary.x - bary.y;
|
||||
return mix(sign(d.x * d.x - d.y), mix(-1.0, 1.0,
|
||||
step(testCross(A, B, p) * testCross(B, C, p), 0.0)),
|
||||
step((d.x - d.y), 0.0)) * testCross(A, C, B);
|
||||
}
|
||||
|
||||
// Solve cubic equation for roots
|
||||
fn solveCubic(a: f32, b: f32, c: f32) -> vec3<f32> {
|
||||
let p = b - a * a / 3.0;
|
||||
let p3 = p * p * p;
|
||||
let q = a * (2.0 * a * a - 9.0 * b) / 27.0 + c;
|
||||
let d = q * q + 4.0 * p3 / 27.0;
|
||||
let offset = -a / 3.0;
|
||||
if(d >= 0.0) {
|
||||
let z = sqrt(d);
|
||||
let x = (vec2(z, -z) - q) / 2.0;
|
||||
let uv = sign(x) * pow(abs(x), vec2(1.0 / 3.0));
|
||||
return vec3(offset + uv.x + uv.y);
|
||||
}
|
||||
let v = acos(-sqrt(-27.0 / p3) * q / 2.0) / 3.0;
|
||||
let m = cos(v);
|
||||
let n = sin(v) * 1.732050808;
|
||||
return vec3(m + m, -n - m, n - m) * sqrt(-p / 3.0) + offset;
|
||||
}
|
||||
|
||||
// Find the signed distance from a point to a bezier curve
|
||||
fn sdBezier(A: vec2<f32>, B_: vec2<f32>,C: vec2<f32>,p: vec2<f32>) -> f32{
|
||||
let B = mix(B_ + vec2(1e-4), B_, abs(sign(B_ * 2.0 - A - C)));
|
||||
|
||||
let a = B - A;
|
||||
let b = A - B * 2.0 + C;
|
||||
let c = a * 2.0;
|
||||
let d = A - p;
|
||||
|
||||
let k = vec3(3.0 * dot(a,b), 2.0 * dot(a,a) + dot(d,b), dot(d,a)) / dot(b,b);
|
||||
let t = clamp(solveCubic(k.x, k.y, k.z), vec3(0.0), vec3(1.0));
|
||||
|
||||
var pos = A + (c + b * t.x) * t.x;
|
||||
var dis = length(pos - p);
|
||||
|
||||
pos = A + (c + b * t.y) * t.y;
|
||||
dis = min(dis, length(pos - p));
|
||||
pos = A + (c + b * t.z) * t.z;
|
||||
dis = min(dis, length(pos - p));
|
||||
|
||||
return dis * signBezier(A, B, C, p);
|
||||
}
|
||||
|
||||
|
||||
@stage(fragment) fn main(
|
||||
@location(0) uv : vec2<f32>,
|
||||
@interpolate(flat) @location(1) instance_index: u32,
|
||||
) -> @location(0) vec4<f32> {
|
||||
var col = vec4<f32>(0.0);
|
||||
|
||||
let p = uv;
|
||||
|
||||
// Define the control points of our curve
|
||||
var A = ubos[instance_index].points[0].xy;
|
||||
var B = ubos[instance_index].points[1].xy;
|
||||
var C = ubos[instance_index].points[2].xy;
|
||||
|
||||
if(ubos[instance_index].type_ == 2u){
|
||||
let tmp = A;
|
||||
A.x = C.x;
|
||||
A.y = B.y;
|
||||
C.y = B.y;
|
||||
B.y = tmp.y;
|
||||
C.x = tmp.x;
|
||||
}
|
||||
|
||||
// Render the control points
|
||||
// var d = min(distance(p, A),min(distance(p, C),distance(p,B)));
|
||||
// if (d < 0.04) {
|
||||
// return vec4(1.0 - smoothstep(0.025, 0.034, d));
|
||||
// }
|
||||
|
||||
// Get the signed distance to bezier curve
|
||||
let d = sdBezier(A, B, C, p);
|
||||
let tex_col = vec4(0.0,1.0,0.0,0.0);
|
||||
// Visualize the distance field using iq's orange/blue scheme
|
||||
if (ubos[instance_index].type_ == 1u){
|
||||
col = tex_col;
|
||||
}else{
|
||||
col = sign(d) * tex_col;
|
||||
}
|
||||
return col;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue