examples: add ported boids example

Ported from https://github.com/austinEng/webgpu-samples/
This commit is contained in:
Andrew Gutekanst 2022-04-12 21:15:49 -04:00 committed by Stephen Gutekanst
parent 9e945ce951
commit a7727c6b54
4 changed files with 336 additions and 12 deletions

View file

@ -23,7 +23,9 @@ pub fn build(b: *std.build.Builder) void {
const test_step = b.step("test", "Run library tests"); const test_step = b.step("test", "Run library tests");
test_step.dependOn(&main_tests.step); test_step.dependOn(&main_tests.step);
const example = b.addExecutable("hello-triangle", "examples/triangle/main.zig");
inline for ([_][] const u8{"triangle", "boids"}) |name| {
const example = b.addExecutable("example-" ++ name, "examples/" ++ name ++ "/main.zig");
example.setTarget(target); example.setTarget(target);
example.setBuildMode(mode); example.setBuildMode(mode);
example.addPackage(pkg); example.addPackage(pkg);
@ -34,8 +36,9 @@ pub fn build(b: *std.build.Builder) void {
const example_run_cmd = example.run(); const example_run_cmd = example.run();
example_run_cmd.step.dependOn(b.getInstallStep()); example_run_cmd.step.dependOn(b.getInstallStep());
const example_run_step = b.step("run-example", "Run the example"); const example_run_step = b.step("run-example-" ++ name, "Run the example");
example_run_step.dependOn(&example_run_cmd.step); example_run_step.dependOn(&example_run_cmd.step);
}
} }
pub const Options = struct { pub const Options = struct {

220
examples/boids/main.zig Normal file
View file

@ -0,0 +1,220 @@
/// A port of Austin Eng's "computeBoids" webgpu sample.
/// https://github.com/austinEng/webgpu-samples/blob/main/src/sample/computeBoids/main.ts
const std = @import("std");
const mach = @import("mach");
const gpu = @import("gpu");
const FrameParams = struct {
compute_pipeline: gpu.ComputePipeline,
render_pipeline: gpu.RenderPipeline,
sprite_vertex_buffer: gpu.Buffer,
particle_buffers: [2]gpu.Buffer,
particle_bind_groups: [2]gpu.BindGroup,
frame_counter: usize,
};
const App = mach.App(*FrameParams, .{});
const num_particle = 1500;
pub fn main() !void {
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
var allocator = gpa.allocator();
const ctx = try allocator.create(FrameParams);
var app = try App.init(allocator, ctx, .{});
const sprite_shader_module = app.device.createShaderModule(&.{
.label = "sprite shader module",
.code = .{ .wgsl = @embedFile("sprite.wgsl") },
});
const update_sprite_shader_module = app.device.createShaderModule(&.{
.label = "update sprite shader module",
.code = .{ .wgsl = @embedFile("updateSprites.wgsl") },
});
const instanced_particles_attributes = [_]gpu.VertexAttribute{
.{
// instance position
.shader_location = 0,
.offset = 0,
.format = .float32x2,
},
.{
// instance velocity
.shader_location = 1,
.offset = 2 * 4,
.format = .float32x2,
},
};
const vertex_buffer_attributes = [_]gpu.VertexAttribute{
.{
// vertex positions
.shader_location = 2,
.offset = 0,
.format = .float32x2,
},
};
const render_pipeline = app.device.createRenderPipeline(&gpu.RenderPipeline.Descriptor{
.vertex = .{
.module = sprite_shader_module,
.entry_point = "vert_main",
.buffers = &[_]gpu.VertexBufferLayout{
.{
// instanced particles buffer
.array_stride = 4*4,
.step_mode = .instance,
.attribute_count = instanced_particles_attributes.len,
.attributes = &instanced_particles_attributes,
},
.{
// vertex buffer
.array_stride = 2*4,
.step_mode = .vertex,
.attribute_count = vertex_buffer_attributes.len,
.attributes = &vertex_buffer_attributes,
},
},
},
.fragment = &gpu.FragmentState{
.module = sprite_shader_module,
.entry_point = "frag_main",
.targets = &[_]gpu.ColorTargetState{
.{
.format = app.swap_chain_format,
},
}
},
});
const compute_pipeline = app.device.createComputePipeline(&gpu.ComputePipeline.Descriptor{
.compute = gpu.ProgrammableStageDescriptor{
.module = update_sprite_shader_module,
.entry_point = "main",
}
});
const vert_buffer_data = [_]f32{
-0.01, -0.02, 0.01,
-0.02, 0.0, 0.02,
};
const sprite_vertex_buffer = app.device.createBuffer(&gpu.Buffer.Descriptor{
.usage = .{.vertex = true, .copy_dst = true},
.size = vert_buffer_data.len * @sizeOf(f32),
});
app.device.getQueue().writeBuffer(sprite_vertex_buffer, 0, f32, &vert_buffer_data);
const sim_params = [_]f32 {
0.04, // .delta_T
0.1, // .rule_1_distance
0.025, // .rule_2_distance
0.025, // .rule_3_distance
0.02, // .rule_1_scale
0.05, // .rule_2_scale
0.005, // .rule_3_scale
};
const sim_param_buffer = app.device.createBuffer(&gpu.Buffer.Descriptor{
.usage = .{.uniform = true, .copy_dst = true},
.size = sim_params.len * @sizeOf(f32),
});
app.device.getQueue().writeBuffer(sim_param_buffer, 0, f32, &sim_params);
var initial_particle_data: [num_particle*4]f32 = undefined;
var rng = std.rand.DefaultPrng.init(0);
const random = rng.random();
var i:usize = 0;
while(i < num_particle): (i += 1) {
initial_particle_data[4 * i + 0] = 2 * (random.float(f32) - 0.5);
initial_particle_data[4 * i + 1] = 2 * (random.float(f32) - 0.5);
initial_particle_data[4 * i + 2] = 2 * (random.float(f32) - 0.5) * 0.1;
initial_particle_data[4 * i + 3] = 2 * (random.float(f32) - 0.5) * 0.1;
}
var particle_buffers: [2]gpu.Buffer = undefined;
var particle_bind_groups: [2]gpu.BindGroup = undefined;
i = 0;
while(i < 2): (i+=1) {
particle_buffers[i] = app.device.createBuffer(&gpu.Buffer.Descriptor{
.usage = .{.vertex = true, .copy_dst = true, .storage = true, },
.size = initial_particle_data.len * @sizeOf(f32),
});
app.device.getQueue().writeBuffer(particle_buffers[i], 0, f32, &initial_particle_data);
}
i = 0;
while(i < 2): (i+=1) {
particle_bind_groups[i] = app.device.createBindGroup(&gpu.BindGroup.Descriptor{
.layout = compute_pipeline.getBindGroupLayout(0),
.entries = &[_]gpu.BindGroup.Entry {
gpu.BindGroup.Entry.buffer(0, sim_param_buffer, 0, sim_params.len * @sizeOf(f32)),
gpu.BindGroup.Entry.buffer(1, particle_buffers[i], 0, initial_particle_data.len * @sizeOf(f32)),
gpu.BindGroup.Entry.buffer(2, particle_buffers[(i+1)%2], 0, initial_particle_data.len * @sizeOf(f32)),
}
});
}
ctx.* = FrameParams{
.compute_pipeline = compute_pipeline,
.render_pipeline = render_pipeline,
.sprite_vertex_buffer = sprite_vertex_buffer,
.particle_buffers = particle_buffers,
.particle_bind_groups = particle_bind_groups,
.frame_counter = 0,
};
try app.run(.{ .frame = frame });
}
fn frame(app: *App, params: *FrameParams) !void {
const back_buffer_view = app.swap_chain.?.getCurrentTextureView();
const color_attachment = gpu.RenderPassColorAttachment{
.view = back_buffer_view,
.resolve_target = null,
.clear_value = std.mem.zeroes(gpu.Color),
.load_op = .clear,
.store_op = .store,
};
const render_pass_descriptor = gpu.RenderPassEncoder.Descriptor{
.color_attachments = &[_]gpu.RenderPassColorAttachment {
color_attachment,
}
};
const command_encoder = app.device.createCommandEncoder(null);
{
const pass_encoder = command_encoder.beginComputePass(null);
pass_encoder.setPipeline(params.compute_pipeline);
pass_encoder.setBindGroup(0, params.particle_bind_groups[params.frame_counter % 2], null);
pass_encoder.dispatch(@floatToInt(u32, std.math.ceil(@as(f32, num_particle) / 64)), 1, 1);
pass_encoder.end();
pass_encoder.release();
}
{
const pass_encoder = command_encoder.beginRenderPass(&render_pass_descriptor);
pass_encoder.setPipeline(params.render_pipeline);
pass_encoder.setVertexBuffer(0, params.particle_buffers[(params.frame_counter + 1) % 2], 0, num_particle*4*@sizeOf(f32));
pass_encoder.setVertexBuffer(1, params.sprite_vertex_buffer, 0, 6*@sizeOf(f32));
pass_encoder.draw(3, num_particle, 0, 0);
pass_encoder.end();
pass_encoder.release();
}
params.frame_counter += 1;
if(params.frame_counter % 60 == 0) {
std.debug.print("Frame {}\n", .{params.frame_counter});
}
var command = command_encoder.finish(null);
command_encoder.release();
app.device.getQueue().submit(&.{command});
command.release();
app.swap_chain.?.present();
back_buffer_view.release();
}

View file

@ -0,0 +1,15 @@
@stage(vertex)
fn vert_main(@location(0) a_particlePos : vec2<f32>,
@location(1) a_particleVel : vec2<f32>,
@location(2) a_pos : vec2<f32>) -> @builtin(position) vec4<f32> {
let angle = -atan2(a_particleVel.x, a_particleVel.y);
let pos = vec2<f32>(
(a_pos.x * cos(angle)) - (a_pos.y * sin(angle)),
(a_pos.x * sin(angle)) + (a_pos.y * cos(angle)));
return vec4<f32>(pos + a_particlePos, 0.0, 1.0);
}
@stage(fragment)
fn frag_main() -> @location(0) vec4<f32> {
return vec4<f32>(1.0, 1.0, 1.0, 1.0);
}

View file

@ -0,0 +1,86 @@
struct Particle {
pos : vec2<f32>;
vel : vec2<f32>;
};
struct SimParams {
deltaT : f32;
rule1Distance : f32;
rule2Distance : f32;
rule3Distance : f32;
rule1Scale : f32;
rule2Scale : f32;
rule3Scale : f32;
};
struct Particles {
particles : array<Particle>;
};
@binding(0) @group(0) var<uniform> params : SimParams;
@binding(1) @group(0) var<storage, read> particlesA : Particles;
@binding(2) @group(0) var<storage, read_write> particlesB : Particles;
// https://github.com/austinEng/Project6-Vulkan-Flocking/blob/master/data/shaders/computeparticles/particle.comp
@stage(compute) @workgroup_size(64)
fn main(@builtin(global_invocation_id) GlobalInvocationID : vec3<u32>) {
var index : u32 = GlobalInvocationID.x;
var vPos = particlesA.particles[index].pos;
var vVel = particlesA.particles[index].vel;
var cMass = vec2<f32>(0.0, 0.0);
var cVel = vec2<f32>(0.0, 0.0);
var colVel = vec2<f32>(0.0, 0.0);
var cMassCount : u32 = 0u;
var cVelCount : u32 = 0u;
var pos : vec2<f32>;
var vel : vec2<f32>;
for (var i : u32 = 0u; i < arrayLength(&particlesA.particles); i = i + 1u) {
if (i == index) {
continue;
}
pos = particlesA.particles[i].pos.xy;
vel = particlesA.particles[i].vel.xy;
if (distance(pos, vPos) < params.rule1Distance) {
cMass = cMass + pos;
cMassCount = cMassCount + 1u;
}
if (distance(pos, vPos) < params.rule2Distance) {
colVel = colVel - (pos - vPos);
}
if (distance(pos, vPos) < params.rule3Distance) {
cVel = cVel + vel;
cVelCount = cVelCount + 1u;
}
}
if (cMassCount > 0u) {
var temp = f32(cMassCount);
cMass = (cMass / vec2<f32>(temp, temp)) - vPos;
}
if (cVelCount > 0u) {
var temp = f32(cVelCount);
cVel = cVel / vec2<f32>(temp, temp);
}
vVel = vVel + (cMass * params.rule1Scale) + (colVel * params.rule2Scale) +
(cVel * params.rule3Scale);
// clamp velocity for a more pleasing simulation
vVel = normalize(vVel) * clamp(length(vVel), 0.0, 0.1);
// kinematic update
vPos = vPos + (vVel * params.deltaT);
// Wrap around boundary
if (vPos.x < -1.0) {
vPos.x = 1.0;
}
if (vPos.x > 1.0) {
vPos.x = -1.0;
}
if (vPos.y < -1.0) {
vPos.y = 1.0;
}
if (vPos.y > 1.0) {
vPos.y = -1.0;
}
// Write back
particlesB.particles[index].pos = vPos;
particlesB.particles[index].vel = vVel;
}