examples/gkurve: simplify fragment shader, use barycentric coordinates
Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
This commit is contained in:
parent
8b46f46cf8
commit
af608151e9
3 changed files with 40 additions and 136 deletions
|
|
@ -1,123 +1,36 @@
|
||||||
//! Ported from https://www.shadertoy.com/view/ltXSDB
|
|
||||||
|
|
||||||
// Signed Distance to a Quadratic Bezier Curve
|
|
||||||
// - Adam Simmons (@adamjsimmons) 2015
|
|
||||||
//
|
|
||||||
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
|
|
||||||
//
|
|
||||||
// Inspired by http://www.pouet.net/topic.php?which=9119
|
|
||||||
// and various shaders by iq, T21, and demofox
|
|
||||||
//
|
|
||||||
// I needed the -signed- distance to a quadratic bezier
|
|
||||||
// curve but couldn't find any examples online that
|
|
||||||
// were both fast and precise. This is my solution.
|
|
||||||
//
|
|
||||||
// v1 - Initial release
|
|
||||||
// v2 - Faster and more robust sign computation
|
|
||||||
//
|
|
||||||
|
|
||||||
struct FragUniform {
|
struct FragUniform {
|
||||||
points: array<vec4<f32>, 3>,
|
|
||||||
type_: u32,
|
type_: u32,
|
||||||
|
padding: vec3<f32>,
|
||||||
}
|
}
|
||||||
@binding(1) @group(0) var<uniform> ubos : array<FragUniform, 3>;
|
@binding(1) @group(0) var<uniform> ubos : array<FragUniform, 3>;
|
||||||
|
|
||||||
// Test if point p crosses line (a, b), returns sign of result
|
|
||||||
fn testCross(a:vec2<f32>, b:vec2<f32>, p:vec2<f32>) -> f32{
|
|
||||||
return sign((b.y - a.y) * (p.x - a.x) - (b.x - a.x) * (p.y - a.y));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Determine which side we're on (using barycentric parameterization)
|
|
||||||
fn signBezier(A: vec2<f32>, B: vec2<f32>, C: vec2<f32>, p:vec2<f32>) -> f32 {
|
|
||||||
let a = C - A;
|
|
||||||
let b = B - A;
|
|
||||||
let c = p - A;
|
|
||||||
let bary = vec2(c.x * b.y - b.x * c.y, a.x * c.y - c.x * a.y) / (a.x * b.y - b.x * a.y);
|
|
||||||
let d = vec2(bary.y * 0.5, 0.0) + 1.0 - bary.x - bary.y;
|
|
||||||
return mix(sign(d.x * d.x - d.y), mix(-1.0, 1.0,
|
|
||||||
step(testCross(A, B, p) * testCross(B, C, p), 0.0)),
|
|
||||||
step((d.x - d.y), 0.0)) * testCross(A, C, B);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Solve cubic equation for roots
|
|
||||||
fn solveCubic(a: f32, b: f32, c: f32) -> vec3<f32> {
|
|
||||||
let p = b - a * a / 3.0;
|
|
||||||
let p3 = p * p * p;
|
|
||||||
let q = a * (2.0 * a * a - 9.0 * b) / 27.0 + c;
|
|
||||||
let d = q * q + 4.0 * p3 / 27.0;
|
|
||||||
let offset = -a / 3.0;
|
|
||||||
if(d >= 0.0) {
|
|
||||||
let z = sqrt(d);
|
|
||||||
let x = (vec2(z, -z) - q) / 2.0;
|
|
||||||
let uv = sign(x) * pow(abs(x), vec2(1.0 / 3.0));
|
|
||||||
return vec3(offset + uv.x + uv.y);
|
|
||||||
}
|
|
||||||
let v = acos(-sqrt(-27.0 / p3) * q / 2.0) / 3.0;
|
|
||||||
let m = cos(v);
|
|
||||||
let n = sin(v) * 1.732050808;
|
|
||||||
return vec3(m + m, -n - m, n - m) * sqrt(-p / 3.0) + offset;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Find the signed distance from a point to a bezier curve
|
|
||||||
fn sdBezier(A: vec2<f32>, B_: vec2<f32>,C: vec2<f32>,p: vec2<f32>) -> f32{
|
|
||||||
let B = mix(B_ + vec2(1e-4), B_, abs(sign(B_ * 2.0 - A - C)));
|
|
||||||
|
|
||||||
let a = B - A;
|
|
||||||
let b = A - B * 2.0 + C;
|
|
||||||
let c = a * 2.0;
|
|
||||||
let d = A - p;
|
|
||||||
|
|
||||||
let k = vec3(3.0 * dot(a,b), 2.0 * dot(a,a) + dot(d,b), dot(d,a)) / dot(b,b);
|
|
||||||
let t = clamp(solveCubic(k.x, k.y, k.z), vec3(0.0), vec3(1.0));
|
|
||||||
|
|
||||||
var pos = A + (c + b * t.x) * t.x;
|
|
||||||
var dis = length(pos - p);
|
|
||||||
|
|
||||||
pos = A + (c + b * t.y) * t.y;
|
|
||||||
dis = min(dis, length(pos - p));
|
|
||||||
pos = A + (c + b * t.z) * t.z;
|
|
||||||
dis = min(dis, length(pos - p));
|
|
||||||
|
|
||||||
return dis * signBezier(A, B, C, p);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@stage(fragment) fn main(
|
@stage(fragment) fn main(
|
||||||
@location(0) uv : vec2<f32>,
|
@location(0) uv : vec2<f32>,
|
||||||
@interpolate(flat) @location(1) instance_index: u32,
|
@location(1) bary : vec3<f32>,
|
||||||
|
@interpolate(flat) @location(2) instance_index: u32,
|
||||||
) -> @location(0) vec4<f32> {
|
) -> @location(0) vec4<f32> {
|
||||||
var col = vec4<f32>(0.0);
|
// Example 1: Visualize barycentric coordinates:
|
||||||
|
// return vec4<f32>(bary.x, bary.y, bary.z, 1.0);
|
||||||
|
// return vec4<f32>(0.0, bary.x, 0.0, 1.0); // bottom-left of triangle
|
||||||
|
// return vec4<f32>(0.0, bary.y, 0.0, 1.0); // bottom-right of triangle
|
||||||
|
// return vec4<f32>(0.0, bary.z, 0.0, 1.0); // top of triangle
|
||||||
|
|
||||||
let p = uv;
|
// Example 2: Render gkurves
|
||||||
|
var inversion = -1.0;
|
||||||
// Define the control points of our curve
|
|
||||||
var A = ubos[instance_index].points[0].xy;
|
|
||||||
var B = ubos[instance_index].points[1].xy;
|
|
||||||
var C = ubos[instance_index].points[2].xy;
|
|
||||||
|
|
||||||
if(ubos[instance_index].type_ == 2u){
|
|
||||||
let tmp = A;
|
|
||||||
A.x = C.x;
|
|
||||||
A.y = B.y;
|
|
||||||
C.y = B.y;
|
|
||||||
B.y = tmp.y;
|
|
||||||
C.x = tmp.x;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Render the control points
|
|
||||||
// var d = min(distance(p, A),min(distance(p, C),distance(p,B)));
|
|
||||||
// if (d < 0.04) {
|
|
||||||
// return vec4(1.0 - smoothstep(0.025, 0.034, d));
|
|
||||||
// }
|
|
||||||
|
|
||||||
// Get the signed distance to bezier curve
|
|
||||||
let d = sdBezier(A, B, C, p);
|
|
||||||
let tex_col = vec4(0.0,1.0,0.0,0.0);
|
|
||||||
// Visualize the distance field using iq's orange/blue scheme
|
|
||||||
if(ubos[instance_index].type_ == 1u) {
|
if(ubos[instance_index].type_ == 1u) {
|
||||||
col = tex_col;
|
// Solid triangle
|
||||||
|
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
|
||||||
|
} else if(ubos[instance_index].type_ == 2u) {
|
||||||
|
// Concave (inverted quadratic bezier curve)
|
||||||
|
inversion = -1.0;
|
||||||
} else {
|
} else {
|
||||||
col = sign(d) * tex_col;
|
// Convex (inverted quadratic bezier curve)
|
||||||
|
inversion = 1.0;
|
||||||
}
|
}
|
||||||
return col;
|
|
||||||
|
var dist = (-(pow(bary.z, 4.0) - bary.y * bary.x)) * inversion;
|
||||||
|
if (dist < 0.0) {
|
||||||
|
discard;
|
||||||
|
}
|
||||||
|
return vec4<f32>(0.0, 1.0, 0.0, 1.0);
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -12,27 +12,31 @@ const glfw = @import("glfw");
|
||||||
pub const Vertex = struct {
|
pub const Vertex = struct {
|
||||||
pos: @Vector(4, f32),
|
pos: @Vector(4, f32),
|
||||||
uv: @Vector(2, f32),
|
uv: @Vector(2, f32),
|
||||||
|
bary: @Vector(3, f32) = .{ 0, 0, 0 },
|
||||||
};
|
};
|
||||||
// Simple triangle
|
// Simple triangle
|
||||||
pub const vertices = [_]Vertex{
|
pub const vertices = [_]Vertex{
|
||||||
.{ .pos = .{ 0, 0.5, 0, 1 }, .uv = .{ 0.5, 1 } },
|
.{ .pos = .{ 0, 0.5, 0, 1 }, .uv = .{ 0.5, 1 }, .bary = .{ 0, 0, 1 } },
|
||||||
.{ .pos = .{ -0.5, -0.5, 0, 1 }, .uv = .{ 0, 0 } },
|
.{ .pos = .{ -0.5, -0.5, 0, 1 }, .uv = .{ 0, 0 }, .bary = .{ 1, 0, 0 } },
|
||||||
.{ .pos = .{ 0.5, -0.5, 0, 1 }, .uv = .{ 1, 0 } },
|
.{ .pos = .{ 0.5, -0.5, 0, 1 }, .uv = .{ 1, 0 }, .bary = .{ 0, 1, 0 } },
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// TODO: Need to ask Ayush about this, ideally we have a square window in this example because it
|
||||||
|
// would mean our triangles are not being "stretched" out which would make debugging nicer.
|
||||||
|
// For some reason this doesn't compile atm.
|
||||||
|
// pub const options = mach.Engine.Options{ .width = 512, .height = 512 };
|
||||||
|
|
||||||
// The uniform read by the vertex shader, it contains the matrix
|
// The uniform read by the vertex shader, it contains the matrix
|
||||||
// that will move vertices
|
// that will move vertices
|
||||||
const VertexUniform = struct {
|
const VertexUniform = struct {
|
||||||
mat: zm.Mat,
|
mat: zm.Mat,
|
||||||
};
|
};
|
||||||
|
|
||||||
// The uniform read by the fragment shader, the points are used
|
|
||||||
// to calculate the bezier curve, and more or less coincide with uvs
|
|
||||||
// (Vec4 for alignment)
|
|
||||||
const FragUniform = struct {
|
const FragUniform = struct {
|
||||||
points: [3]@Vector(4, f32),
|
|
||||||
// TODO use an enum? Remember that it will be casted to u32 in wgsl
|
// TODO use an enum? Remember that it will be casted to u32 in wgsl
|
||||||
type: u32,
|
type: u32,
|
||||||
|
// Padding for struct alignment to 16 bytes (minimum in WebGPU uniform).
|
||||||
|
padding: @Vector(3, f32) = undefined,
|
||||||
};
|
};
|
||||||
// TODO texture and sampler, create buffers and use an index field
|
// TODO texture and sampler, create buffers and use an index field
|
||||||
// in FragUniform to tell which texture to read
|
// in FragUniform to tell which texture to read
|
||||||
|
|
@ -69,6 +73,7 @@ pub fn init(app: *App, engine: *mach.Engine) !void {
|
||||||
const vertex_attributes = [_]gpu.VertexAttribute{
|
const vertex_attributes = [_]gpu.VertexAttribute{
|
||||||
.{ .format = .float32x4, .offset = @offsetOf(Vertex, "pos"), .shader_location = 0 },
|
.{ .format = .float32x4, .offset = @offsetOf(Vertex, "pos"), .shader_location = 0 },
|
||||||
.{ .format = .float32x2, .offset = @offsetOf(Vertex, "uv"), .shader_location = 1 },
|
.{ .format = .float32x2, .offset = @offsetOf(Vertex, "uv"), .shader_location = 1 },
|
||||||
|
.{ .format = .float32x3, .offset = @offsetOf(Vertex, "bary"), .shader_location = 2 },
|
||||||
};
|
};
|
||||||
const vertex_buffer_layout = gpu.VertexBufferLayout{
|
const vertex_buffer_layout = gpu.VertexBufferLayout{
|
||||||
.array_stride = @sizeOf(Vertex),
|
.array_stride = @sizeOf(Vertex),
|
||||||
|
|
@ -151,29 +156,12 @@ pub fn init(app: *App, engine: *mach.Engine) !void {
|
||||||
var frag_uniform_mapped = frag_uniform_buffer.getMappedRange(FragUniform, 0, num_instances);
|
var frag_uniform_mapped = frag_uniform_buffer.getMappedRange(FragUniform, 0, num_instances);
|
||||||
const tmp_frag_ubo = [_]FragUniform{
|
const tmp_frag_ubo = [_]FragUniform{
|
||||||
.{
|
.{
|
||||||
// The points correspond to the left point, middle point, right point (when viewed regularly)
|
|
||||||
// in UV coordinates
|
|
||||||
.points = [_]@Vector(4, f32){
|
|
||||||
.{ 0, 0, 0, 0 },
|
|
||||||
.{ 0.5, 1, 0, 0 },
|
|
||||||
.{ 1, 0, 0, 0 },
|
|
||||||
},
|
|
||||||
.type = 1,
|
.type = 1,
|
||||||
},
|
},
|
||||||
.{
|
.{
|
||||||
.points = [_]@Vector(4, f32){
|
|
||||||
.{ 0, 0, 0, 0 },
|
|
||||||
.{ 0.5, 1, 0, 0 },
|
|
||||||
.{ 1, 0, 0, 0 },
|
|
||||||
},
|
|
||||||
.type = 0,
|
.type = 0,
|
||||||
},
|
},
|
||||||
.{
|
.{
|
||||||
.points = [_]@Vector(4, f32){
|
|
||||||
.{ 0, 0, 0, 0 },
|
|
||||||
.{ 0.5, 1, 0, 0 },
|
|
||||||
.{ 1, 0, 0, 0 },
|
|
||||||
},
|
|
||||||
.type = 2,
|
.type = 2,
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
|
|
||||||
|
|
@ -6,17 +6,20 @@ struct VertexUniform {
|
||||||
struct VertexOut {
|
struct VertexOut {
|
||||||
@builtin(position) position_clip : vec4<f32>,
|
@builtin(position) position_clip : vec4<f32>,
|
||||||
@location(0) frag_uv : vec2<f32>,
|
@location(0) frag_uv : vec2<f32>,
|
||||||
@interpolate(flat) @location(1) instance_index: u32,
|
@location(1) frag_bary: vec3<f32>,
|
||||||
|
@interpolate(flat) @location(2) instance_index: u32,
|
||||||
}
|
}
|
||||||
|
|
||||||
@stage(vertex) fn main(
|
@stage(vertex) fn main(
|
||||||
@builtin(instance_index) instanceIdx : u32,
|
@builtin(instance_index) instanceIdx : u32,
|
||||||
@location(0) position: vec4<f32>,
|
@location(0) position: vec4<f32>,
|
||||||
@location(1) uv: vec2<f32>,
|
@location(1) uv: vec2<f32>,
|
||||||
|
@location(2) bary: vec3<f32>,
|
||||||
) -> VertexOut {
|
) -> VertexOut {
|
||||||
var output : VertexOut;
|
var output : VertexOut;
|
||||||
output.position_clip = ubos[instanceIdx].matrix * position;
|
output.position_clip = ubos[instanceIdx].matrix * position;
|
||||||
output.frag_uv = uv;
|
output.frag_uv = uv;
|
||||||
|
output.frag_bary = bary;
|
||||||
output.instance_index = instanceIdx;
|
output.instance_index = instanceIdx;
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue