math: remove usingnamespace in favour of mixins (#1231)

This commit is contained in:
yzrmn 2024-08-08 07:05:35 +02:00 committed by GitHub
parent 42d2a57611
commit af7ac96a0e
Failed to generate hash of commit
5 changed files with 828 additions and 606 deletions

View file

@ -50,34 +50,34 @@ const ray = @import("ray.zig");
pub const collision = @import("collision.zig");
/// Standard f32 precision types
pub const Vec2 = vec.Vec(2, f32);
pub const Vec3 = vec.Vec(3, f32);
pub const Vec4 = vec.Vec(4, f32);
pub const Vec2 = vec.Vec2(f32);
pub const Vec3 = vec.Vec3(f32);
pub const Vec4 = vec.Vec4(f32);
pub const Quat = q.Quat(f32);
pub const Mat2x2 = mat.Mat(2, 2, Vec2);
pub const Mat3x3 = mat.Mat(3, 3, Vec3);
pub const Mat4x4 = mat.Mat(4, 4, Vec4);
pub const Ray = ray.Ray(Vec3);
pub const Mat2x2 = mat.Mat2x2(f32);
pub const Mat3x3 = mat.Mat3x3(f32);
pub const Mat4x4 = mat.Mat4x4(f32);
pub const Ray = ray.Ray3(f32);
/// Half-precision f16 types
pub const Vec2h = vec.Vec(2, f16);
pub const Vec3h = vec.Vec(3, f16);
pub const Vec4h = vec.Vec(4, f16);
pub const Vec2h = vec.Vec2(f16);
pub const Vec3h = vec.Vec3(f16);
pub const Vec4h = vec.Vec4(f16);
pub const Quath = q.Quat(f16);
pub const Mat2x2h = mat.Mat(2, 2, Vec2h);
pub const Mat3x3h = mat.Mat(3, 3, Vec3h);
pub const Mat4x4h = mat.Mat(4, 4, Vec4h);
pub const Rayh = ray.Ray(Vec3h);
pub const Mat2x2h = mat.Mat2x2(f16);
pub const Mat3x3h = mat.Mat3x3(f16);
pub const Mat4x4h = mat.Mat4x4(f16);
pub const Rayh = ray.Ray3(f16);
/// Double-precision f64 types
pub const Vec2d = vec.Vec(2, f64);
pub const Vec3d = vec.Vec(3, f64);
pub const Vec4d = vec.Vec(4, f64);
pub const Vec2d = vec.Vec2(f64);
pub const Vec3d = vec.Vec3(f64);
pub const Vec4d = vec.Vec4(f64);
pub const Quatd = q.Quat(f64);
pub const Mat2x2d = mat.Mat(2, 2, Vec2d);
pub const Mat3x3d = mat.Mat(3, 3, Vec3d);
pub const Mat4x4d = mat.Mat(4, 4, Vec4d);
pub const Rayd = ray.Ray(Vec3d);
pub const Mat2x2d = mat.Mat2x2(f64);
pub const Mat3x3d = mat.Mat3x3(f64);
pub const Mat4x4d = mat.Mat4x4(f64);
pub const Rayd = ray.Ray3(f64);
/// Standard f32 precision initializers
pub const vec2 = Vec2.init;

View file

@ -3,10 +3,8 @@ const testing = mach.testing;
const math = mach.math;
const vec = @import("vec.zig");
pub fn Mat(
comptime n_cols: usize,
comptime n_rows: usize,
comptime Vector: type,
pub fn Mat2x2(
comptime Scalar: type,
) type {
return extern struct {
/// The column vectors of the matrix.
@ -28,367 +26,468 @@ pub fn Mat(
v: [cols]Vec,
/// The number of columns, e.g. Mat3x4.cols == 3
pub const cols = n_cols;
pub const cols = 2;
/// The number of rows, e.g. Mat3x4.rows == 4
pub const rows = n_rows;
pub const rows = 2;
/// The scalar type of this matrix, e.g. Mat3x3.T == f32
pub const T = Vector.T;
pub const T = Scalar;
/// The underlying Vec type, e.g. Mat3x3.Vec == Vec3
pub const Vec = Vector;
pub const Vec = vec.Vec2(Scalar);
/// The Vec type corresponding to the number of rows, e.g. Mat3x3.RowVec == Vec3
pub const RowVec = vec.Vec(rows, T);
pub const RowVec = Vec;
/// The Vec type corresponding to the numebr of cols, e.g. Mat3x4.ColVec = Vec4
pub const ColVec = vec.Vec(cols, T);
pub const ColVec = Vec;
const Matrix = @This();
const Shared = MatShared(RowVec, ColVec, Matrix);
/// Identity matrix
pub const ident = switch (Matrix) {
inline math.Mat2x2, math.Mat2x2h, math.Mat2x2d => Matrix.init(
&RowVec.init(1, 0),
pub const ident = Matrix.init(
&RowVec.init(1, 0),
&RowVec.init(0, 1),
);
/// Constructs a 2x2 matrix with the given rows. For example to write a translation
/// matrix like in the left part of this equation:
///
/// ```
/// |1 tx| |x | |x+y*tx|
/// |0 ty| |y=1| = |ty |
/// ```
///
/// You would write it with the same visual layout:
///
/// ```
/// const m = Mat2x2.init(
/// vec3(1, tx),
/// vec3(0, ty),
/// );
/// ```
///
/// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
pub inline fn init(r0: *const RowVec, r1: *const RowVec) Matrix {
return .{ .v = [_]Vec{
Vec.init(r0.x(), r1.x()),
Vec.init(r0.y(), r1.y()),
} };
}
/// Returns the row `i` of the matrix.
pub inline fn row(m: *const Matrix, i: usize) RowVec {
// Note: we inline RowVec.init manually here as it is faster in debug builds.
// return RowVec.init(m.v[0].v[i], m.v[1].v[i]);
return .{ .v = .{ m.v[0].v[i], m.v[1].v[i] } };
}
/// Returns the column `i` of the matrix.
pub inline fn col(m: *const Matrix, i: usize) RowVec {
// Note: we inline RowVec.init manually here as it is faster in debug builds.
// return RowVec.init(m.v[i].v[0], m.v[i].v[1]);
return .{ .v = .{ m.v[i].v[0], m.v[i].v[1] } };
}
/// Transposes the matrix.
pub inline fn transpose(m: *const Matrix) Matrix {
return .{ .v = [_]Vec{
Vec.init(m.v[0].v[0], m.v[1].v[0]),
Vec.init(m.v[0].v[1], m.v[1].v[1]),
} };
}
/// Constructs a 1D matrix which scales each dimension by the given scalar.
pub inline fn scaleScalar(t: Vec.T) Matrix {
return init(
&RowVec.init(t, 0),
&RowVec.init(0, 1),
),
inline math.Mat3x3, math.Mat3x3h, math.Mat3x3d => Matrix.init(
&RowVec.init(1, 0, 0),
&RowVec.init(0, 1, 0),
);
}
/// Constructs a 1D matrix which translates coordinates by the given scalar.
pub inline fn translateScalar(t: Vec.T) Matrix {
return init(
&RowVec.init(1, t),
&RowVec.init(0, 1),
);
}
pub const mul = Shared.mul;
pub const mulVec = Shared.mulVec;
};
}
pub fn Mat3x3(
comptime Scalar: type,
) type {
return extern struct {
/// The column vectors of the matrix.
///
/// Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
/// The translation vector is stored in contiguous memory elements 12, 13, 14:
///
/// ```
/// [4]Vec4{
/// vec4( 1, 0, 0, 0),
/// vec4( 0, 1, 0, 0),
/// vec4( 0, 0, 1, 0),
/// vec4(tx, ty, tz, tw),
/// }
/// ```
///
/// Use the init() constructor to write code which visually matches the same layout as you'd
/// see used in scientific / maths communities.
v: [cols]Vec,
/// The number of columns, e.g. Mat3x4.cols == 3
pub const cols = 3;
/// The number of rows, e.g. Mat3x4.rows == 4
pub const rows = 3;
/// The scalar type of this matrix, e.g. Mat3x3.T == f32
pub const T = Scalar;
/// The underlying Vec type, e.g. Mat3x3.Vec == Vec3
pub const Vec = vec.Vec3(Scalar);
/// The Vec type corresponding to the number of rows, e.g. Mat3x3.RowVec == Vec3
pub const RowVec = Vec;
/// The Vec type corresponding to the numebr of cols, e.g. Mat3x4.ColVec = Vec4
pub const ColVec = Vec;
const Matrix = @This();
const Shared = MatShared(RowVec, ColVec, Matrix);
/// Identity matrix
pub const ident = Matrix.init(
&RowVec.init(1, 0, 0),
&RowVec.init(0, 1, 0),
&RowVec.init(0, 0, 1),
);
/// Constructs a 3x3 matrix with the given rows. For example to write a translation
/// matrix like in the left part of this equation:
///
/// ```
/// |1 0 tx| |x | |x+z*tx|
/// |0 1 ty| |y | = |y+z*ty|
/// |0 0 tz| |z=1| |tz |
/// ```
///
/// You would write it with the same visual layout:
///
/// ```
/// const m = Mat3x3.init(
/// vec3(1, 0, tx),
/// vec3(0, 1, ty),
/// vec3(0, 0, tz),
/// );
/// ```
///
/// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
pub inline fn init(r0: *const RowVec, r1: *const RowVec, r2: *const RowVec) Matrix {
return .{ .v = [_]Vec{
Vec.init(r0.x(), r1.x(), r2.x()),
Vec.init(r0.y(), r1.y(), r2.y()),
Vec.init(r0.z(), r1.z(), r2.z()),
} };
}
/// Returns the row `i` of the matrix.
pub inline fn row(m: *const Matrix, i: usize) RowVec {
// Note: we inline RowVec.init manually here as it is faster in debug builds.
// return RowVec.init(m.v[0].v[i], m.v[1].v[i], m.v[2].v[i]);
return .{ .v = .{ m.v[0].v[i], m.v[1].v[i], m.v[2].v[i] } };
}
/// Returns the column `i` of the matrix.
pub inline fn col(m: *const Matrix, i: usize) RowVec {
// Note: we inline RowVec.init manually here as it is faster in debug builds.
// return RowVec.init(m.v[i].v[0], m.v[i].v[1], m.v[i].v[2]);
return .{ .v = .{ m.v[i].v[0], m.v[i].v[1], m.v[i].v[2] } };
}
/// Transposes the matrix.
pub inline fn transpose(m: *const Matrix) Matrix {
return .{ .v = [_]Vec{
Vec.init(m.v[0].v[0], m.v[1].v[0], m.v[2].v[0]),
Vec.init(m.v[0].v[1], m.v[1].v[1], m.v[2].v[1]),
Vec.init(m.v[0].v[2], m.v[1].v[2], m.v[2].v[2]),
} };
}
/// Constructs a 2D matrix which scales each dimension by the given vector.
pub inline fn scale(s: math.Vec2) Matrix {
return init(
&RowVec.init(s.x(), 0, 0),
&RowVec.init(0, s.y(), 0),
&RowVec.init(0, 0, 1),
),
inline math.Mat4x4, math.Mat4x4h, math.Mat4x4d => Matrix.init(
&Vec.init(1, 0, 0, 0),
&Vec.init(0, 1, 0, 0),
&Vec.init(0, 0, 1, 0),
&Vec.init(0, 0, 0, 1),
),
else => @compileError("Expected Mat3x3, Mat4x4 found '" ++ @typeName(Matrix) ++ "'"),
};
);
}
pub usingnamespace switch (Matrix) {
inline math.Mat2x2, math.Mat2x2h, math.Mat2x2d => struct {
/// Constructs a 2x2 matrix with the given rows. For example to write a translation
/// matrix like in the left part of this equation:
///
/// ```
/// |1 tx| |x | |x+y*tx|
/// |0 ty| |y=1| = |ty |
/// ```
///
/// You would write it with the same visual layout:
///
/// ```
/// const m = Mat2x2.init(
/// vec3(1, tx),
/// vec3(0, ty),
/// );
/// ```
///
/// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
pub inline fn init(r0: *const RowVec, r1: *const RowVec) Matrix {
return .{ .v = [_]Vec{
Vec.init(r0.x(), r1.x()),
Vec.init(r0.y(), r1.y()),
} };
}
/// Constructs a 2D matrix which scales each dimension by the given scalar.
pub inline fn scaleScalar(t: Vec.T) Matrix {
return scale(math.Vec2.splat(t));
}
/// Returns the row `i` of the matrix.
pub inline fn row(m: *const Matrix, i: usize) RowVec {
// Note: we inline RowVec.init manually here as it is faster in debug builds.
// return RowVec.init(m.v[0].v[i], m.v[1].v[i]);
return .{ .v = .{ m.v[0].v[i], m.v[1].v[i] } };
}
/// Constructs a 2D matrix which translates coordinates by the given vector.
pub inline fn translate(t: math.Vec2) Matrix {
return init(
&RowVec.init(1, 0, t.x()),
&RowVec.init(0, 1, t.y()),
&RowVec.init(0, 0, 1),
);
}
/// Returns the column `i` of the matrix.
pub inline fn col(m: *const Matrix, i: usize) RowVec {
// Note: we inline RowVec.init manually here as it is faster in debug builds.
// return RowVec.init(m.v[i].v[0], m.v[i].v[1]);
return .{ .v = .{ m.v[i].v[0], m.v[i].v[1] } };
}
/// Constructs a 2D matrix which translates coordinates by the given scalar.
pub inline fn translateScalar(t: Vec.T) Matrix {
return translate(math.Vec2.splat(t));
}
/// Transposes the matrix.
pub inline fn transpose(m: *const Matrix) Matrix {
return .{ .v = [_]Vec{
Vec.init(m.v[0].v[0], m.v[1].v[0]),
Vec.init(m.v[0].v[1], m.v[1].v[1]),
} };
}
/// Returns the translation component of the matrix.
pub inline fn translation(t: Matrix) math.Vec2 {
return math.Vec2.init(t.v[2].x(), t.v[2].y());
}
/// Constructs a 1D matrix which scales each dimension by the given scalar.
pub inline fn scaleScalar(t: Vec.T) Matrix {
return init(
&RowVec.init(t, 0),
&RowVec.init(0, 1),
);
}
pub const mul = Shared.mul;
pub const mulVec = Shared.mulVec;
};
}
/// Constructs a 1D matrix which translates coordinates by the given scalar.
pub inline fn translateScalar(t: Vec.T) Matrix {
return init(
&RowVec.init(1, t),
&RowVec.init(0, 1),
);
}
},
inline math.Mat3x3, math.Mat3x3h, math.Mat3x3d => struct {
/// Constructs a 3x3 matrix with the given rows. For example to write a translation
/// matrix like in the left part of this equation:
///
/// ```
/// |1 0 tx| |x | |x+z*tx|
/// |0 1 ty| |y | = |y+z*ty|
/// |0 0 tz| |z=1| |tz |
/// ```
///
/// You would write it with the same visual layout:
///
/// ```
/// const m = Mat3x3.init(
/// vec3(1, 0, tx),
/// vec3(0, 1, ty),
/// vec3(0, 0, tz),
/// );
/// ```
///
/// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
pub inline fn init(r0: *const RowVec, r1: *const RowVec, r2: *const RowVec) Matrix {
return .{ .v = [_]Vec{
Vec.init(r0.x(), r1.x(), r2.x()),
Vec.init(r0.y(), r1.y(), r2.y()),
Vec.init(r0.z(), r1.z(), r2.z()),
} };
}
pub fn Mat4x4(
comptime Scalar: type,
) type {
return extern struct {
/// The column vectors of the matrix.
///
/// Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
/// The translation vector is stored in contiguous memory elements 12, 13, 14:
///
/// ```
/// [4]Vec4{
/// vec4( 1, 0, 0, 0),
/// vec4( 0, 1, 0, 0),
/// vec4( 0, 0, 1, 0),
/// vec4(tx, ty, tz, tw),
/// }
/// ```
///
/// Use the init() constructor to write code which visually matches the same layout as you'd
/// see used in scientific / maths communities.
v: [cols]Vec,
/// Returns the row `i` of the matrix.
pub inline fn row(m: *const Matrix, i: usize) RowVec {
// Note: we inline RowVec.init manually here as it is faster in debug builds.
// return RowVec.init(m.v[0].v[i], m.v[1].v[i], m.v[2].v[i]);
return .{ .v = .{ m.v[0].v[i], m.v[1].v[i], m.v[2].v[i] } };
}
/// The number of columns, e.g. Mat3x4.cols == 3
pub const cols = 4;
/// Returns the column `i` of the matrix.
pub inline fn col(m: *const Matrix, i: usize) RowVec {
// Note: we inline RowVec.init manually here as it is faster in debug builds.
// return RowVec.init(m.v[i].v[0], m.v[i].v[1], m.v[i].v[2]);
return .{ .v = .{ m.v[i].v[0], m.v[i].v[1], m.v[i].v[2] } };
}
/// The number of rows, e.g. Mat3x4.rows == 4
pub const rows = 4;
/// Transposes the matrix.
pub inline fn transpose(m: *const Matrix) Matrix {
return .{ .v = [_]Vec{
Vec.init(m.v[0].v[0], m.v[1].v[0], m.v[2].v[0]),
Vec.init(m.v[0].v[1], m.v[1].v[1], m.v[2].v[1]),
Vec.init(m.v[0].v[2], m.v[1].v[2], m.v[2].v[2]),
} };
}
/// The scalar type of this matrix, e.g. Mat3x3.T == f32
pub const T = Scalar;
/// Constructs a 2D matrix which scales each dimension by the given vector.
pub inline fn scale(s: math.Vec2) Matrix {
return init(
&RowVec.init(s.x(), 0, 0),
&RowVec.init(0, s.y(), 0),
&RowVec.init(0, 0, 1),
);
}
/// The underlying Vec type, e.g. Mat3x3.Vec == Vec3
pub const Vec = vec.Vec4(Scalar);
/// Constructs a 2D matrix which scales each dimension by the given scalar.
pub inline fn scaleScalar(t: Vec.T) Matrix {
return scale(math.Vec2.splat(t));
}
/// The Vec type corresponding to the number of rows, e.g. Mat3x3.RowVec == Vec3
pub const RowVec = Vec;
/// Constructs a 2D matrix which translates coordinates by the given vector.
pub inline fn translate(t: math.Vec2) Matrix {
return init(
&RowVec.init(1, 0, t.x()),
&RowVec.init(0, 1, t.y()),
&RowVec.init(0, 0, 1),
);
}
/// The Vec type corresponding to the numebr of cols, e.g. Mat3x4.ColVec = Vec4
pub const ColVec = Vec;
/// Constructs a 2D matrix which translates coordinates by the given scalar.
pub inline fn translateScalar(t: Vec.T) Matrix {
return translate(math.Vec2.splat(t));
}
const Matrix = @This();
/// Returns the translation component of the matrix.
pub inline fn translation(t: Matrix) math.Vec2 {
return math.Vec2.init(t.v[2].x(), t.v[2].y());
}
},
inline math.Mat4x4, math.Mat4x4h, math.Mat4x4d => struct {
/// Constructs a 4x4 matrix with the given rows. For example to write a translation
/// matrix like in the left part of this equation:
///
/// ```
/// |1 0 0 tx| |x | |x+w*tx|
/// |0 1 0 ty| |y | = |y+w*ty|
/// |0 0 1 tz| |z | |z+w*tz|
/// |0 0 0 tw| |w=1| |tw |
/// ```
///
/// You would write it with the same visual layout:
///
/// ```
/// const m = Mat4x4.init(
/// &vec4(1, 0, 0, tx),
/// &vec4(0, 1, 0, ty),
/// &vec4(0, 0, 1, tz),
/// &vec4(0, 0, 0, tw),
/// );
/// ```
///
/// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
pub inline fn init(r0: *const RowVec, r1: *const RowVec, r2: *const RowVec, r3: *const RowVec) Matrix {
return .{ .v = [_]Vec{
Vec.init(r0.x(), r1.x(), r2.x(), r3.x()),
Vec.init(r0.y(), r1.y(), r2.y(), r3.y()),
Vec.init(r0.z(), r1.z(), r2.z(), r3.z()),
Vec.init(r0.w(), r1.w(), r2.w(), r3.w()),
} };
}
const Shared = MatShared(RowVec, ColVec, Matrix);
/// Returns the row `i` of the matrix.
pub inline fn row(m: *const Matrix, i: usize) RowVec {
return RowVec{ .v = RowVec.Vector{ m.v[0].v[i], m.v[1].v[i], m.v[2].v[i], m.v[3].v[i] } };
}
/// Identity matrix
pub const ident = Matrix.init(
&Vec.init(1, 0, 0, 0),
&Vec.init(0, 1, 0, 0),
&Vec.init(0, 0, 1, 0),
&Vec.init(0, 0, 0, 1),
);
/// Returns the column `i` of the matrix.
pub inline fn col(m: *const Matrix, i: usize) RowVec {
return RowVec{ .v = RowVec.Vector{ m.v[i].v[0], m.v[i].v[1], m.v[i].v[2], m.v[i].v[3] } };
}
/// Constructs a 4x4 matrix with the given rows. For example to write a translation
/// matrix like in the left part of this equation:
///
/// ```
/// |1 0 0 tx| |x | |x+w*tx|
/// |0 1 0 ty| |y | = |y+w*ty|
/// |0 0 1 tz| |z | |z+w*tz|
/// |0 0 0 tw| |w=1| |tw |
/// ```
///
/// You would write it with the same visual layout:
///
/// ```
/// const m = Mat4x4.init(
/// &vec4(1, 0, 0, tx),
/// &vec4(0, 1, 0, ty),
/// &vec4(0, 0, 1, tz),
/// &vec4(0, 0, 0, tw),
/// );
/// ```
///
/// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
pub inline fn init(r0: *const RowVec, r1: *const RowVec, r2: *const RowVec, r3: *const RowVec) Matrix {
return .{ .v = [_]Vec{
Vec.init(r0.x(), r1.x(), r2.x(), r3.x()),
Vec.init(r0.y(), r1.y(), r2.y(), r3.y()),
Vec.init(r0.z(), r1.z(), r2.z(), r3.z()),
Vec.init(r0.w(), r1.w(), r2.w(), r3.w()),
} };
}
/// Transposes the matrix.
pub inline fn transpose(m: *const Matrix) Matrix {
return .{ .v = [_]Vec{
Vec.init(m.v[0].v[0], m.v[1].v[0], m.v[2].v[0], m.v[3].v[0]),
Vec.init(m.v[0].v[1], m.v[1].v[1], m.v[2].v[1], m.v[3].v[1]),
Vec.init(m.v[0].v[2], m.v[1].v[2], m.v[2].v[2], m.v[3].v[2]),
Vec.init(m.v[0].v[3], m.v[1].v[3], m.v[2].v[3], m.v[3].v[3]),
} };
}
/// Returns the row `i` of the matrix.
pub inline fn row(m: *const Matrix, i: usize) RowVec {
return RowVec{ .v = RowVec.Vector{ m.v[0].v[i], m.v[1].v[i], m.v[2].v[i], m.v[3].v[i] } };
}
/// Constructs a 3D matrix which scales each dimension by the given vector.
pub inline fn scale(s: math.Vec3) Matrix {
return init(
&RowVec.init(s.x(), 0, 0, 0),
&RowVec.init(0, s.y(), 0, 0),
&RowVec.init(0, 0, s.z(), 0),
&RowVec.init(0, 0, 0, 1),
);
}
/// Returns the column `i` of the matrix.
pub inline fn col(m: *const Matrix, i: usize) RowVec {
return RowVec{ .v = RowVec.Vector{ m.v[i].v[0], m.v[i].v[1], m.v[i].v[2], m.v[i].v[3] } };
}
/// Constructs a 3D matrix which scales each dimension by the given scalar.
pub inline fn scaleScalar(s: Vec.T) Matrix {
return scale(math.Vec3.splat(s));
}
/// Transposes the matrix.
pub inline fn transpose(m: *const Matrix) Matrix {
return .{ .v = [_]Vec{
Vec.init(m.v[0].v[0], m.v[1].v[0], m.v[2].v[0], m.v[3].v[0]),
Vec.init(m.v[0].v[1], m.v[1].v[1], m.v[2].v[1], m.v[3].v[1]),
Vec.init(m.v[0].v[2], m.v[1].v[2], m.v[2].v[2], m.v[3].v[2]),
Vec.init(m.v[0].v[3], m.v[1].v[3], m.v[2].v[3], m.v[3].v[3]),
} };
}
/// Constructs a 3D matrix which translates coordinates by the given vector.
pub inline fn translate(t: math.Vec3) Matrix {
return init(
&RowVec.init(1, 0, 0, t.x()),
&RowVec.init(0, 1, 0, t.y()),
&RowVec.init(0, 0, 1, t.z()),
&RowVec.init(0, 0, 0, 1),
);
}
/// Constructs a 3D matrix which scales each dimension by the given vector.
pub inline fn scale(s: math.Vec3) Matrix {
return init(
&RowVec.init(s.x(), 0, 0, 0),
&RowVec.init(0, s.y(), 0, 0),
&RowVec.init(0, 0, s.z(), 0),
&RowVec.init(0, 0, 0, 1),
);
}
/// Constructs a 3D matrix which translates coordinates by the given scalar.
pub inline fn translateScalar(t: Vec.T) Matrix {
return translate(math.Vec3.splat(t));
}
/// Constructs a 3D matrix which scales each dimension by the given scalar.
pub inline fn scaleScalar(s: Vec.T) Matrix {
return scale(math.Vec3.splat(s));
}
/// Returns the translation component of the matrix.
pub inline fn translation(t: *const Matrix) math.Vec3 {
return math.Vec3.init(t.v[3].x(), t.v[3].y(), t.v[3].z());
}
/// Constructs a 3D matrix which translates coordinates by the given vector.
pub inline fn translate(t: math.Vec3) Matrix {
return init(
&RowVec.init(1, 0, 0, t.x()),
&RowVec.init(0, 1, 0, t.y()),
&RowVec.init(0, 0, 1, t.z()),
&RowVec.init(0, 0, 0, 1),
);
}
/// Constructs a 3D matrix which rotates around the X axis by `angle_radians`.
pub inline fn rotateX(angle_radians: f32) Matrix {
const c = math.cos(angle_radians);
const s = math.sin(angle_radians);
return Matrix.init(
&RowVec.init(1, 0, 0, 0),
&RowVec.init(0, c, -s, 0),
&RowVec.init(0, s, c, 0),
&RowVec.init(0, 0, 0, 1),
);
}
/// Constructs a 3D matrix which translates coordinates by the given scalar.
pub inline fn translateScalar(t: Vec.T) Matrix {
return translate(math.Vec3.splat(t));
}
/// Constructs a 3D matrix which rotates around the X axis by `angle_radians`.
pub inline fn rotateY(angle_radians: f32) Matrix {
const c = math.cos(angle_radians);
const s = math.sin(angle_radians);
return Matrix.init(
&RowVec.init(c, 0, s, 0),
&RowVec.init(0, 1, 0, 0),
&RowVec.init(-s, 0, c, 0),
&RowVec.init(0, 0, 0, 1),
);
}
/// Returns the translation component of the matrix.
pub inline fn translation(t: *const Matrix) math.Vec3 {
return math.Vec3.init(t.v[3].x(), t.v[3].y(), t.v[3].z());
}
/// Constructs a 3D matrix which rotates around the Z axis by `angle_radians`.
pub inline fn rotateZ(angle_radians: f32) Matrix {
const c = math.cos(angle_radians);
const s = math.sin(angle_radians);
return Matrix.init(
&RowVec.init(c, -s, 0, 0),
&RowVec.init(s, c, 0, 0),
&RowVec.init(0, 0, 1, 0),
&RowVec.init(0, 0, 0, 1),
);
}
/// Constructs a 3D matrix which rotates around the X axis by `angle_radians`.
pub inline fn rotateX(angle_radians: f32) Matrix {
const c = math.cos(angle_radians);
const s = math.sin(angle_radians);
return Matrix.init(
&RowVec.init(1, 0, 0, 0),
&RowVec.init(0, c, -s, 0),
&RowVec.init(0, s, c, 0),
&RowVec.init(0, 0, 0, 1),
);
}
/// Constructs a 2D projection matrix, aka. an orthographic projection matrix.
///
/// First, a cuboid is defined with the parameters:
///
/// * (right - left) defining the distance between the left and right faces of the cube
/// * (top - bottom) defining the distance between the top and bottom faces of the cube
/// * (near - far) defining the distance between the back (near) and front (far) faces of the cube
///
/// We then need to construct a projection matrix which converts points in that
/// cuboid's space into clip space:
///
/// https://machengine.org/engine/math/traversing-coordinate-systems/#view---clip-space
///
/// Normally, in sysgpu/webgpu the depth buffer of floating point values would
/// have the range [0, 1] representing [near, far], i.e. a pixel very close to the
/// viewer would have a depth value of 0.0, and a pixel very far from the viewer
/// would have a depth value of 1.0. But this is an ineffective use of floating
/// point precision, a better approach is a reversed depth buffer:
///
/// * https://webgpu.github.io/webgpu-samples/samples/reversedZ
/// * https://developer.nvidia.com/content/depth-precision-visualized
///
/// Mach mandates the use of a reversed depth buffer, so the returned transformation
/// matrix maps to near=1 and far=0.
pub inline fn projection2D(v: struct {
left: f32,
right: f32,
bottom: f32,
top: f32,
near: f32,
far: f32,
}) Matrix {
var p = Matrix.ident;
p = p.mul(&Matrix.translate(math.vec3(
(v.right + v.left) / (v.left - v.right), // translate X so that the middle of (left, right) maps to x=0 in clip space
(v.top + v.bottom) / (v.bottom - v.top), // translate Y so that the middle of (bottom, top) maps to y=0 in clip space
v.far / (v.far - v.near), // translate Z so that far maps to z=0
)));
p = p.mul(&Matrix.scale(math.vec3(
2 / (v.right - v.left), // scale X so that [left, right] has a 2 unit range, e.g. [-1, +1]
2 / (v.top - v.bottom), // scale Y so that [bottom, top] has a 2 unit range, e.g. [-1, +1]
1 / (v.near - v.far), // scale Z so that [near, far] has a 1 unit range, e.g. [0, -1]
)));
return p;
}
},
else => @compileError("Expected Mat3x3, Mat4x4 found '" ++ @typeName(Matrix) ++ "'"),
};
/// Constructs a 3D matrix which rotates around the X axis by `angle_radians`.
pub inline fn rotateY(angle_radians: f32) Matrix {
const c = math.cos(angle_radians);
const s = math.sin(angle_radians);
return Matrix.init(
&RowVec.init(c, 0, s, 0),
&RowVec.init(0, 1, 0, 0),
&RowVec.init(-s, 0, c, 0),
&RowVec.init(0, 0, 0, 1),
);
}
/// Constructs a 3D matrix which rotates around the Z axis by `angle_radians`.
pub inline fn rotateZ(angle_radians: f32) Matrix {
const c = math.cos(angle_radians);
const s = math.sin(angle_radians);
return Matrix.init(
&RowVec.init(c, -s, 0, 0),
&RowVec.init(s, c, 0, 0),
&RowVec.init(0, 0, 1, 0),
&RowVec.init(0, 0, 0, 1),
);
}
/// Constructs a 2D projection matrix, aka. an orthographic projection matrix.
///
/// First, a cuboid is defined with the parameters:
///
/// * (right - left) defining the distance between the left and right faces of the cube
/// * (top - bottom) defining the distance between the top and bottom faces of the cube
/// * (near - far) defining the distance between the back (near) and front (far) faces of the cube
///
/// We then need to construct a projection matrix which converts points in that
/// cuboid's space into clip space:
///
/// https://machengine.org/engine/math/traversing-coordinate-systems/#view---clip-space
///
/// Normally, in sysgpu/webgpu the depth buffer of floating point values would
/// have the range [0, 1] representing [near, far], i.e. a pixel very close to the
/// viewer would have a depth value of 0.0, and a pixel very far from the viewer
/// would have a depth value of 1.0. But this is an ineffective use of floating
/// point precision, a better approach is a reversed depth buffer:
///
/// * https://webgpu.github.io/webgpu-samples/samples/reversedZ
/// * https://developer.nvidia.com/content/depth-precision-visualized
///
/// Mach mandates the use of a reversed depth buffer, so the returned transformation
/// matrix maps to near=1 and far=0.
pub inline fn projection2D(v: struct {
left: f32,
right: f32,
bottom: f32,
top: f32,
near: f32,
far: f32,
}) Matrix {
var p = Matrix.ident;
p = p.mul(&Matrix.translate(math.vec3(
(v.right + v.left) / (v.left - v.right), // translate X so that the middle of (left, right) maps to x=0 in clip space
(v.top + v.bottom) / (v.bottom - v.top), // translate Y so that the middle of (bottom, top) maps to y=0 in clip space
v.far / (v.far - v.near), // translate Z so that far maps to z=0
)));
p = p.mul(&Matrix.scale(math.vec3(
2 / (v.right - v.left), // scale X so that [left, right] has a 2 unit range, e.g. [-1, +1]
2 / (v.top - v.bottom), // scale Y so that [bottom, top] has a 2 unit range, e.g. [-1, +1]
1 / (v.near - v.far), // scale Z so that [near, far] has a 1 unit range, e.g. [0, -1]
)));
return p;
}
pub const mul = Shared.mul;
pub const mulVec = Shared.mulVec;
};
}
pub fn MatShared(comptime RowVec: type, comptime ColVec: type, comptime Matrix: type) type {
return struct {
/// Matrix multiplication a*b
pub inline fn mul(a: *const Matrix, b: *const Matrix) Matrix {
@setEvalBranchQuota(10000);
@ -417,7 +516,7 @@ pub fn Mat(
result[i] += matrix.v[row].v[i] * vector.v[row];
}
}
return vec.Vec(ColVec.n, ColVec.T){ .v = result };
return ColVec{ .v = result };
}
// TODO: the below code was correct in our old implementation, it just needs to be updated

View file

@ -6,16 +6,16 @@ const mat = @import("mat.zig");
pub fn Quat(comptime Scalar: type) type {
return extern struct {
v: vec.Vec(4, Scalar),
v: vec.Vec4(Scalar),
/// The scalar type of this matrix, e.g. Mat3x3.T == f32
pub const T = Vec.T;
/// The underlying Vec type, e.g. math.Vec4, math.Vec4h, math.Vec4d
pub const Vec = vec.Vec(4, Scalar);
pub const Vec = vec.Vec4(Scalar);
/// The Vec type used to represent axes, e.g. math.Vec3
pub const Axis = vec.Vec(3, Scalar);
pub const Axis = vec.Vec3(Scalar);
/// Creates a quaternion from the given x, y, z, and w values
pub inline fn init(x: T, y: T, z: T, w: T) Quat(T) {

View file

@ -4,7 +4,9 @@ const math = mach.math;
const vec = @import("vec.zig");
// A Ray in three-dimensional space
pub fn Ray(comptime Vec3P: type) type {
pub fn Ray3(comptime Scalar: type) type {
const Vec3P = vec.Vec3(Scalar);
// Floating point precision, will be either f16, f32, or f64
const P: type = Vec3P.T;
@ -34,159 +36,153 @@ pub fn Ray(comptime Vec3P: type) type {
/// and w represents hit distance t
pub const Hit = Vec4P;
pub usingnamespace switch (Vec3P) {
math.Vec3, math.Vec3h, math.Vec3d => struct {
// Determine the 3D vector dimension with the largest scalar
// value
fn maxDim(v: [3]P) u8 {
if (v[0] > v[1]) {
if (v[0] > v[2]) {
return 0;
} else {
return 2;
}
} else if (v[1] > v[2]) {
return 1;
} else {
return 2;
}
// Determine the 3D vector dimension with the largest scalar
// value
fn maxDim(v: [3]P) u8 {
if (v[0] > v[1]) {
if (v[0] > v[2]) {
return 0;
} else {
return 2;
}
} else if (v[1] > v[2]) {
return 1;
} else {
return 2;
}
}
// Algorithm based on:
// https://www.jcgt.org/published/0002/01/05/
/// Check for collision of a ray and a triangle in 3D space.
/// Triangle winding, which determines front- and backface of
/// the given triangle, matters if backface culling is to be
/// enabled. Without backface culling it does not matter for
/// hit detection, however the barycentric coordinates will
/// be negative in case of a backface hit.
/// On hit, will return a RayHit which contains distance t
/// and barycentric coordinates.
pub inline fn triangleIntersect(
ray: *const Ray(Vec3P),
va: *const Vec3P,
vb: *const Vec3P,
vc: *const Vec3P,
backface_culling: bool,
) ?Hit {
const kz: u8 = maxDim([3]P{
@abs(ray.direction.v[0]),
@abs(ray.direction.v[1]),
@abs(ray.direction.v[2]),
});
if (ray.direction.v[kz] == 0.0) {
return null;
}
var kx: u8 = kz + 1;
if (kx == 3)
kx = 0;
var ky: u8 = kx + 1;
if (ky == 3)
ky = 0;
// Algorithm based on:
// https://www.jcgt.org/published/0002/01/05/
/// Check for collision of a ray and a triangle in 3D space.
/// Triangle winding, which determines front- and backface of
/// the given triangle, matters if backface culling is to be
/// enabled. Without backface culling it does not matter for
/// hit detection, however the barycentric coordinates will
/// be negative in case of a backface hit.
/// On hit, will return a RayHit which contains distance t
/// and barycentric coordinates.
pub inline fn triangleIntersect(
ray: *const Ray3(P),
va: *const Vec3P,
vb: *const Vec3P,
vc: *const Vec3P,
backface_culling: bool,
) ?Hit {
const kz: u8 = maxDim([3]P{
@abs(ray.direction.v[0]),
@abs(ray.direction.v[1]),
@abs(ray.direction.v[2]),
});
if (ray.direction.v[kz] == 0.0) {
return null;
}
var kx: u8 = kz + 1;
if (kx == 3)
kx = 0;
var ky: u8 = kx + 1;
if (ky == 3)
ky = 0;
if (ray.direction.v[kz] < 0.0) {
const tmp = kx;
kx = ky;
ky = tmp;
}
if (ray.direction.v[kz] < 0.0) {
const tmp = kx;
kx = ky;
ky = tmp;
}
const sx: P = ray.direction.v[kx] / ray.direction.v[kz];
const sy: P = ray.direction.v[ky] / ray.direction.v[kz];
const sz: P = 1.0 / ray.direction.v[kz];
const sx: P = ray.direction.v[kx] / ray.direction.v[kz];
const sy: P = ray.direction.v[ky] / ray.direction.v[kz];
const sz: P = 1.0 / ray.direction.v[kz];
const a: @Vector(3, P) = va.v - ray.origin.v;
const b: @Vector(3, P) = vb.v - ray.origin.v;
const c: @Vector(3, P) = vc.v - ray.origin.v;
const a: @Vector(3, P) = va.v - ray.origin.v;
const b: @Vector(3, P) = vb.v - ray.origin.v;
const c: @Vector(3, P) = vc.v - ray.origin.v;
const ax: P = a[kx] - sx * a[kz];
const ay: P = a[ky] - sy * a[kz];
const bx: P = b[kx] - sx * b[kz];
const by: P = b[ky] - sy * b[kz];
const cx: P = c[kx] - sx * c[kz];
const cy: P = c[ky] - sy * c[kz];
const ax: P = a[kx] - sx * a[kz];
const ay: P = a[ky] - sy * a[kz];
const bx: P = b[kx] - sx * b[kz];
const by: P = b[ky] - sy * b[kz];
const cx: P = c[kx] - sx * c[kz];
const cy: P = c[ky] - sy * c[kz];
var u: P = cx * by - cy * bx;
var v: P = ax * cy - ay * cx;
const w: P = bx * ay - by * ax;
var u: P = cx * by - cy * bx;
var v: P = ax * cy - ay * cx;
const w: P = bx * ay - by * ax;
// Double precision fallback
if (u == 0.0 or v == 0.0 or w == 0.0) {
const cxby: PP = @as(PP, @floatCast(cx)) *
@as(PP, @floatCast(by));
const cybx: PP = @as(PP, @floatCast(cy)) *
@as(PP, @floatCast(bx));
u = @floatCast(cxby - cybx);
// Double precision fallback
if (u == 0.0 or v == 0.0 or w == 0.0) {
const cxby: PP = @as(PP, @floatCast(cx)) *
@as(PP, @floatCast(by));
const cybx: PP = @as(PP, @floatCast(cy)) *
@as(PP, @floatCast(bx));
u = @floatCast(cxby - cybx);
const axcy: PP = @as(PP, @floatCast(ax)) *
@as(PP, @floatCast(cy));
const aycx: PP = @as(PP, @floatCast(ay)) *
@as(PP, @floatCast(cx));
v = @floatCast(axcy - aycx);
const axcy: PP = @as(PP, @floatCast(ax)) *
@as(PP, @floatCast(cy));
const aycx: PP = @as(PP, @floatCast(ay)) *
@as(PP, @floatCast(cx));
v = @floatCast(axcy - aycx);
const bxay: PP = @as(PP, @floatCast(bx)) *
@as(PP, @floatCast(ay));
const byax: PP = @as(PP, @floatCast(by)) *
@as(PP, @floatCast(ax));
v = @floatCast(bxay - byax);
}
const bxay: PP = @as(PP, @floatCast(bx)) *
@as(PP, @floatCast(ay));
const byax: PP = @as(PP, @floatCast(by)) *
@as(PP, @floatCast(ax));
v = @floatCast(bxay - byax);
}
if (backface_culling) {
if (u < 0.0 or v < 0.0 or w < 0.0)
return null; // no hit
} else {
if ((u < 0.0 or v < 0.0 or w < 0.0) and
(u > 0.0 or v > 0.0 or w > 0.0))
return null; // no hit
}
if (backface_culling) {
if (u < 0.0 or v < 0.0 or w < 0.0)
return null; // no hit
} else {
if ((u < 0.0 or v < 0.0 or w < 0.0) and
(u > 0.0 or v > 0.0 or w > 0.0))
return null; // no hit
}
var det: P = u + v + w;
if (det == 0.0)
return null; // no hit
var det: P = u + v + w;
if (det == 0.0)
return null; // no hit
// Calculate scaled z-coordinates of vertices and use them
// to calculate the hit distance
const az: P = sz * a[kz];
const bz: P = sz * b[kz];
const cz: P = sz * c[kz];
var t: P = u * az + v * bz + w * cz;
// Calculate scaled z-coordinates of vertices and use them
// to calculate the hit distance
const az: P = sz * a[kz];
const bz: P = sz * b[kz];
const cz: P = sz * c[kz];
var t: P = u * az + v * bz + w * cz;
// hit.t counts as a previous hit for backface culling,
// in which case triangle behind will no longer be
// considered a hit.
// Since Ray.Hit is represented by a Vec4, t is the last
// element of that vector
var hit: Hit = Vec4P.init(
undefined,
undefined,
undefined,
math.inf(f32),
);
// hit.t counts as a previous hit for backface culling,
// in which case triangle behind will no longer be
// considered a hit.
// Since Ray.Hit is represented by a Vec4, t is the last
// element of that vector
var hit: Hit = Vec4P.init(
undefined,
undefined,
undefined,
math.inf(f32),
);
if (backface_culling) {
if ((t < 0.0) or (t > hit.v[3] * det))
return null; // no hit
} else {
if (det < 0) {
t = -t;
det = -det;
}
if ((t < 0.0) or (t > hit.v[3] * det))
return null; // no hit
}
// Normalize u, v, w and t
const rcp_det = 1.0 / det;
hit.v[0] = u * rcp_det;
hit.v[1] = v * rcp_det;
hit.v[2] = w * rcp_det;
hit.v[3] = t * rcp_det;
return hit;
if (backface_culling) {
if ((t < 0.0) or (t > hit.v[3] * det))
return null; // no hit
} else {
if (det < 0) {
t = -t;
det = -det;
}
},
else => @compileError("Expected Vec3, Vec3h, or Vec3d, found '" ++
@typeName(Vec3P) ++ "'"),
};
if ((t < 0.0) or (t > hit.v[3] * det))
return null; // no hit
}
// Normalize u, v, w and t
const rcp_det = 1.0 / det;
hit.v[0] = u * rcp_det;
hit.v[1] = v * rcp_det;
hit.v[2] = w * rcp_det;
hit.v[3] = t * rcp_det;
return hit;
}
};
}

View file

@ -8,145 +8,272 @@ const quat = @import("quat.zig");
pub const VecComponent = enum { x, y, z, w };
pub fn Vec(comptime n_value: usize, comptime Scalar: type) type {
pub fn Vec2(comptime Scalar: type) type {
return extern struct {
v: Vector,
/// The vector dimension size, e.g. Vec3.n == 3
pub const n = n_value;
pub const n = 2;
/// The scalar type of this vector, e.g. Vec3.T == f32
pub const T = Scalar;
// The underlying @Vector type
pub const Vector = @Vector(n_value, Scalar);
pub const Vector = @Vector(n, Scalar);
const VecN = @This();
pub usingnamespace switch (VecN.n) {
inline 2 => struct {
pub inline fn init(xs: Scalar, ys: Scalar) VecN {
return .{ .v = .{ xs, ys } };
}
pub inline fn fromInt(xs: anytype, ys: anytype) VecN {
return .{ .v = .{ @floatFromInt(xs), @floatFromInt(ys) } };
}
pub inline fn x(v: *const VecN) Scalar {
return v.v[0];
}
pub inline fn y(v: *const VecN) Scalar {
return v.v[1];
}
},
inline 3 => struct {
pub inline fn init(xs: Scalar, ys: Scalar, zs: Scalar) VecN {
return .{ .v = .{ xs, ys, zs } };
}
pub inline fn fromInt(xs: anytype, ys: anytype, zs: anytype) VecN {
return .{ .v = .{ @floatFromInt(xs), @floatFromInt(ys), @floatFromInt(zs) } };
}
pub inline fn x(v: *const VecN) Scalar {
return v.v[0];
}
pub inline fn y(v: *const VecN) Scalar {
return v.v[1];
}
pub inline fn z(v: *const VecN) Scalar {
return v.v[2];
}
const Shared = VecShared(Scalar, VecN);
pub inline fn swizzle(
v: *const VecN,
xc: VecComponent,
yc: VecComponent,
zc: VecComponent,
) VecN {
return .{ .v = @shuffle(VecN.T, v.v, undefined, [3]T{
@intFromEnum(xc),
@intFromEnum(yc),
@intFromEnum(zc),
}) };
}
pub inline fn init(xs: Scalar, ys: Scalar) VecN {
return .{ .v = .{ xs, ys } };
}
pub inline fn fromInt(xs: anytype, ys: anytype) VecN {
return .{ .v = .{ @floatFromInt(xs), @floatFromInt(ys) } };
}
pub inline fn x(v: *const VecN) Scalar {
return v.v[0];
}
pub inline fn y(v: *const VecN) Scalar {
return v.v[1];
}
/// Calculates the cross product between vector a and b.
/// This can be done only in 3D and required inputs are Vec3.
pub inline fn cross(a: *const VecN, b: *const VecN) VecN {
// https://gamemath.com/book/vectors.html#cross_product
const s1 = a.swizzle(.y, .z, .x)
.mul(&b.swizzle(.z, .x, .y));
const s2 = a.swizzle(.z, .x, .y)
.mul(&b.swizzle(.y, .z, .x));
return s1.sub(&s2);
}
pub const add = Shared.add;
pub const sub = Shared.sub;
pub const div = Shared.div;
pub const mul = Shared.mul;
pub const addScalar = Shared.addScalar;
pub const subScalar = Shared.subScalar;
pub const divScalar = Shared.divScalar;
pub const mulScalar = Shared.mulScalar;
pub const less = Shared.less;
pub const lessEq = Shared.lessEq;
pub const greater = Shared.greater;
pub const greaterEq = Shared.greaterEq;
pub const splat = Shared.splat;
pub const len2 = Shared.len2;
pub const len = Shared.len;
pub const normalize = Shared.normalize;
pub const dir = Shared.dir;
pub const dist2 = Shared.dist2;
pub const dist = Shared.dist;
pub const lerp = Shared.lerp;
pub const dot = Shared.dot;
pub const max = Shared.max;
pub const min = Shared.min;
pub const inverse = Shared.inverse;
pub const negate = Shared.negate;
pub const maxScalar = Shared.maxScalar;
pub const minScalar = Shared.minScalar;
pub const eqlApprox = Shared.eqlApprox;
pub const eql = Shared.eql;
};
}
/// Vector * Matrix multiplication
pub inline fn mulMat(vector: *const VecN, matrix: *const mat.Mat(3, 3, Vec(3, T))) VecN {
var result = [_]VecN.T{0} ** 3;
inline for (0..3) |i| {
inline for (0..3) |j| {
result[i] += vector.v[j] * matrix.v[i].v[j];
}
}
return .{ .v = result };
}
pub fn Vec3(comptime Scalar: type) type {
return extern struct {
v: Vector,
/// Vector * Quat multiplication
/// https://github.com/greggman/wgpu-matrix/blob/main/src/vec3-impl.ts#L718
pub inline fn mulQuat(v: *const VecN, q: *const quat.Quat(Scalar)) VecN {
const qx = q.v.x();
const qy = q.v.y();
const qz = q.v.z();
const w2 = q.v.w() * 2;
/// The vector dimension size, e.g. Vec3.n == 3
pub const n = 3;
const vx = v.x();
const vy = v.y();
const vz = v.z();
/// The scalar type of this vector, e.g. Vec3.T == f32
pub const T = Scalar;
const uv_x = qy * vz - qz * vy;
const uv_y = qz * vx - qx * vz;
const uv_z = qx * vy - qy * vx;
// The underlying @Vector type
pub const Vector = @Vector(n, Scalar);
return math.vec3(
vx + uv_x * w2 + (qy * uv_z - qz * uv_y) * 2,
vy + uv_y * w2 + (qz * uv_x - qx * uv_z) * 2,
vz + uv_z * w2 + (qz * uv_y - qy * uv_x) * 2,
);
}
},
inline 4 => struct {
pub inline fn init(xs: Scalar, ys: Scalar, zs: Scalar, ws: Scalar) VecN {
return .{ .v = .{ xs, ys, zs, ws } };
}
pub inline fn fromInt(xs: anytype, ys: anytype, zs: anytype, ws: anytype) VecN {
return .{ .v = .{ @floatFromInt(xs), @floatFromInt(ys), @floatFromInt(zs), @floatFromInt(ws) } };
}
pub inline fn x(v: *const VecN) Scalar {
return v.v[0];
}
pub inline fn y(v: *const VecN) Scalar {
return v.v[1];
}
pub inline fn z(v: *const VecN) Scalar {
return v.v[2];
}
pub inline fn w(v: *const VecN) Scalar {
return v.v[3];
}
const VecN = @This();
/// Vector * Matrix multiplication
pub inline fn mulMat(vector: *const VecN, matrix: *const mat.Mat(4, 4, Vec(4, T))) VecN {
var result = [_]VecN.T{0} ** 4;
inline for (0..4) |i| {
inline for (0..4) |j| {
result[i] += vector.v[j] * matrix.v[i].v[j];
}
}
return .{ .v = result };
}
},
else => @compileError("Expected Vec2, Vec3, Vec4, found '" ++ @typeName(VecN) ++ "'"),
};
const Shared = VecShared(Scalar, VecN);
pub inline fn init(xs: Scalar, ys: Scalar, zs: Scalar) VecN {
return .{ .v = .{ xs, ys, zs } };
}
pub inline fn fromInt(xs: anytype, ys: anytype, zs: anytype) VecN {
return .{ .v = .{ @floatFromInt(xs), @floatFromInt(ys), @floatFromInt(zs) } };
}
pub inline fn x(v: *const VecN) Scalar {
return v.v[0];
}
pub inline fn y(v: *const VecN) Scalar {
return v.v[1];
}
pub inline fn z(v: *const VecN) Scalar {
return v.v[2];
}
pub inline fn swizzle(
v: *const VecN,
xc: VecComponent,
yc: VecComponent,
zc: VecComponent,
) VecN {
return .{ .v = @shuffle(VecN.T, v.v, undefined, [3]T{
@intFromEnum(xc),
@intFromEnum(yc),
@intFromEnum(zc),
}) };
}
/// Calculates the cross product between vector a and b.
/// This can be done only in 3D and required inputs are Vec3.
pub inline fn cross(a: *const VecN, b: *const VecN) VecN {
// https://gamemath.com/book/vectors.html#cross_product
const s1 = a.swizzle(.y, .z, .x)
.mul(&b.swizzle(.z, .x, .y));
const s2 = a.swizzle(.z, .x, .y)
.mul(&b.swizzle(.y, .z, .x));
return s1.sub(&s2);
}
/// Vector * Matrix multiplication
pub inline fn mulMat(vector: *const VecN, matrix: *const mat.Mat3x3(T)) VecN {
var result = [_]VecN.T{0} ** 3;
inline for (0..3) |i| {
inline for (0..3) |j| {
result[i] += vector.v[j] * matrix.v[i].v[j];
}
}
return .{ .v = result };
}
/// Vector * Quat multiplication
/// https://github.com/greggman/wgpu-matrix/blob/main/src/vec3-impl.ts#L718
pub inline fn mulQuat(v: *const VecN, q: *const quat.Quat(Scalar)) VecN {
const qx = q.v.x();
const qy = q.v.y();
const qz = q.v.z();
const w2 = q.v.w() * 2;
const vx = v.x();
const vy = v.y();
const vz = v.z();
const uv_x = qy * vz - qz * vy;
const uv_y = qz * vx - qx * vz;
const uv_z = qx * vy - qy * vx;
return math.vec3(
vx + uv_x * w2 + (qy * uv_z - qz * uv_y) * 2,
vy + uv_y * w2 + (qz * uv_x - qx * uv_z) * 2,
vz + uv_z * w2 + (qz * uv_y - qy * uv_x) * 2,
);
}
pub const add = Shared.add;
pub const sub = Shared.sub;
pub const div = Shared.div;
pub const mul = Shared.mul;
pub const addScalar = Shared.addScalar;
pub const subScalar = Shared.subScalar;
pub const divScalar = Shared.divScalar;
pub const mulScalar = Shared.mulScalar;
pub const less = Shared.less;
pub const lessEq = Shared.lessEq;
pub const greater = Shared.greater;
pub const greaterEq = Shared.greaterEq;
pub const splat = Shared.splat;
pub const len2 = Shared.len2;
pub const len = Shared.len;
pub const normalize = Shared.normalize;
pub const dir = Shared.dir;
pub const dist2 = Shared.dist2;
pub const dist = Shared.dist;
pub const lerp = Shared.lerp;
pub const dot = Shared.dot;
pub const max = Shared.max;
pub const min = Shared.min;
pub const inverse = Shared.inverse;
pub const negate = Shared.negate;
pub const maxScalar = Shared.maxScalar;
pub const minScalar = Shared.minScalar;
pub const eqlApprox = Shared.eqlApprox;
pub const eql = Shared.eql;
};
}
pub fn Vec4(comptime Scalar: type) type {
return extern struct {
v: Vector,
/// The vector dimension size, e.g. Vec3.n == 3
pub const n = 4;
/// The scalar type of this vector, e.g. Vec3.T == f32
pub const T = Scalar;
// The underlying @Vector type
pub const Vector = @Vector(n, Scalar);
const VecN = @This();
const Shared = VecShared(Scalar, VecN);
pub inline fn init(xs: Scalar, ys: Scalar, zs: Scalar, ws: Scalar) VecN {
return .{ .v = .{ xs, ys, zs, ws } };
}
pub inline fn fromInt(xs: anytype, ys: anytype, zs: anytype, ws: anytype) VecN {
return .{ .v = .{ @floatFromInt(xs), @floatFromInt(ys), @floatFromInt(zs), @floatFromInt(ws) } };
}
pub inline fn x(v: *const VecN) Scalar {
return v.v[0];
}
pub inline fn y(v: *const VecN) Scalar {
return v.v[1];
}
pub inline fn z(v: *const VecN) Scalar {
return v.v[2];
}
pub inline fn w(v: *const VecN) Scalar {
return v.v[3];
}
/// Vector * Matrix multiplication
pub inline fn mulMat(vector: *const VecN, matrix: *const mat.Mat4x4(T)) VecN {
var result = [_]VecN.T{0} ** 4;
inline for (0..4) |i| {
inline for (0..4) |j| {
result[i] += vector.v[j] * matrix.v[i].v[j];
}
}
return .{ .v = result };
}
pub const add = Shared.add;
pub const sub = Shared.sub;
pub const div = Shared.div;
pub const mul = Shared.mul;
pub const addScalar = Shared.addScalar;
pub const subScalar = Shared.subScalar;
pub const divScalar = Shared.divScalar;
pub const mulScalar = Shared.mulScalar;
pub const less = Shared.less;
pub const lessEq = Shared.lessEq;
pub const greater = Shared.greater;
pub const greaterEq = Shared.greaterEq;
pub const splat = Shared.splat;
pub const len2 = Shared.len2;
pub const len = Shared.len;
pub const normalize = Shared.normalize;
pub const dir = Shared.dir;
pub const dist2 = Shared.dist2;
pub const dist = Shared.dist;
pub const lerp = Shared.lerp;
pub const dot = Shared.dot;
pub const max = Shared.max;
pub const min = Shared.min;
pub const inverse = Shared.inverse;
pub const negate = Shared.negate;
pub const maxScalar = Shared.maxScalar;
pub const minScalar = Shared.minScalar;
pub const eqlApprox = Shared.eqlApprox;
pub const eql = Shared.eql;
};
}
pub fn VecShared(comptime Scalar: type, comptime VecN: type) type {
return struct {
/// Element-wise addition
pub inline fn add(a: *const VecN, b: *const VecN) VecN {
return .{ .v = a.v + b.v };
@ -377,10 +504,10 @@ pub fn Vec(comptime n_value: usize, comptime Scalar: type) type {
/// Checks for approximate (absolute tolerance) equality between two vectors
/// of the same type and dimensions
pub inline fn eqlApprox(a: *const VecN, b: *const VecN, tolerance: T) bool {
pub inline fn eqlApprox(a: *const VecN, b: *const VecN, tolerance: Scalar) bool {
var i: usize = 0;
while (i < VecN.n) : (i += 1) {
if (!math.eql(T, a.v[i], b.v[i], tolerance)) {
if (!math.eql(Scalar, a.v[i], b.v[i], tolerance)) {
return false;
}
}
@ -390,7 +517,7 @@ pub fn Vec(comptime n_value: usize, comptime Scalar: type) type {
/// Checks for approximate (absolute epsilon tolerance) equality
/// between two vectors of the same type and dimensions
pub inline fn eql(a: *const VecN, b: *const VecN) bool {
return a.eqlApprox(b, math.eps(T));
return a.eqlApprox(b, math.eps(Scalar));
}
};
}