// TODO: // - handle textures better witexture atlas // - handle adding and removing triangles and quads better const std = @import("std"); const mach = @import("mach"); const gpu = @import("gpu"); const zm = @import("zmath"); const zigimg = @import("zigimg"); const glfw = @import("glfw"); const draw = @import("draw.zig"); const Atlas = @import("atlas.zig").Atlas; pub const options = mach.Options{ .width = 640, .height = 480 }; pub const App = @This(); pipeline: gpu.RenderPipeline, queue: gpu.Queue, vertex_buffer: gpu.Buffer, vertices: std.ArrayList(draw.Vertex), update_vertex_buffer: bool, vertex_uniform_buffer: gpu.Buffer, update_vertex_uniform_buffer: bool, frag_uniform_buffer: gpu.Buffer, fragment_uniform_list: std.ArrayList(draw.FragUniform), update_frag_uniform_buffer: bool, bind_group: gpu.BindGroup, pub fn init(app: *App, engine: *mach.Engine) !void { try engine.core.setSizeLimits(.{ .width = 20, .height = 20 }, .{ .width = null, .height = null }); const queue = engine.gpu_driver.device.getQueue(); const AtlasRGB8 = Atlas(zigimg.color.Rgba32); // TODO: Refactor texture atlas size number var texture_atlas_data: AtlasRGB8 = try AtlasRGB8.init(engine.allocator, 640); defer texture_atlas_data.deinit(engine.allocator); const atlas_size = gpu.Extent3D{ .width = texture_atlas_data.size, .height = texture_atlas_data.size }; const atlas_float_size = @intToFloat(f32, texture_atlas_data.size); const texture = engine.gpu_driver.device.createTexture(&.{ .size = atlas_size, .format = .rgba8_unorm, .usage = .{ .texture_binding = true, .copy_dst = true, .render_attachment = true, }, }); const data_layout = gpu.Texture.DataLayout{ .bytes_per_row = @intCast(u32, atlas_size.width * 4), .rows_per_image = @intCast(u32, atlas_size.height), }; const img = try zigimg.Image.fromMemory(engine.allocator, @embedFile("../assets/gotta-go-fast.png")); defer img.deinit(); const atlas_img_region = try texture_atlas_data.reserve(engine.allocator, @truncate(u32, img.width), @truncate(u32, img.height)); const img_uv_data = atlas_img_region.getUVData(atlas_float_size); switch (img.pixels.?) { .Rgba32 => |pixels| texture_atlas_data.set(atlas_img_region, pixels), .Rgb24 => |pixels| { const data = try rgb24ToRgba32(engine.allocator, pixels); defer data.deinit(engine.allocator); texture_atlas_data.set(atlas_img_region, data.Rgba32); }, else => @panic("unsupported image color format"), } const white_tex_scale = 80; const atlas_white_region = try texture_atlas_data.reserve(engine.allocator, white_tex_scale, white_tex_scale); const white_texture_uv_data = atlas_white_region.getUVData(atlas_float_size); var white_tex_data = try engine.allocator.alloc(zigimg.color.Rgba32, white_tex_scale * white_tex_scale); std.mem.set(zigimg.color.Rgba32, white_tex_data, zigimg.color.Rgba32.initRGB(0xff, 0xff, 0xff)); texture_atlas_data.set(atlas_white_region, white_tex_data); queue.writeTexture( &.{ .texture = texture }, &data_layout, &.{ .width = texture_atlas_data.size, .height = texture_atlas_data.size }, zigimg.color.Rgba32, texture_atlas_data.data, ); app.vertices = try std.ArrayList(draw.Vertex).initCapacity(engine.allocator, 9); app.fragment_uniform_list = try std.ArrayList(draw.FragUniform).initCapacity(engine.allocator, 3); const wsize = try engine.core.getWindowSize(); const window_width = @intToFloat(f32, wsize.width); const window_height = @intToFloat(f32, wsize.height); const triangle_scale = 250; _ = window_width; _ = window_height; _ = triangle_scale; _ = img_uv_data; _ = white_texture_uv_data; // try draw.equilateralTriangle(app, .{ window_width / 2, window_height / 2 }, triangle_scale, .{}, img_uv_data); // try draw.equilateralTriangle(app, .{ window_width / 2, window_height / 2 - triangle_scale }, triangle_scale, .{ .type = .concave }, img_uv_data); // try draw.equilateralTriangle(app, .{ window_width / 2 - triangle_scale, window_height / 2 - triangle_scale / 2 }, triangle_scale, .{ .type = .convex }, white_texture_uv_data); // try draw.quad(app, .{ 0, 0 }, .{ 200, 200 }, .{}, img_uv_data); try draw.circle(app, .{ window_width / 2, window_height / 2 }, window_height / 2 - 10, .{ 0, 0.5, 0.75, 1.0 }, white_texture_uv_data); const vs_module = engine.gpu_driver.device.createShaderModule(&.{ .label = "my vertex shader", .code = .{ .wgsl = @embedFile("vert.wgsl") }, }); const fs_module = engine.gpu_driver.device.createShaderModule(&.{ .label = "my fragment shader", .code = .{ .wgsl = @embedFile("frag.wgsl") }, }); const blend = gpu.BlendState{ .color = .{ .operation = .add, .src_factor = .src_alpha, .dst_factor = .one_minus_src_alpha, }, .alpha = .{ .operation = .add, .src_factor = .one, .dst_factor = .zero, }, }; const color_target = gpu.ColorTargetState{ .format = engine.gpu_driver.swap_chain_format, .blend = &blend, .write_mask = gpu.ColorWriteMask.all, }; const fragment = gpu.FragmentState{ .module = fs_module, .entry_point = "main", .targets = &.{color_target}, .constants = null, }; const vbgle = gpu.BindGroupLayout.Entry.buffer(0, .{ .vertex = true }, .uniform, true, 0); const fbgle = gpu.BindGroupLayout.Entry.buffer(1, .{ .fragment = true }, .read_only_storage, true, 0); const sbgle = gpu.BindGroupLayout.Entry.sampler(2, .{ .fragment = true }, .filtering); const tbgle = gpu.BindGroupLayout.Entry.texture(3, .{ .fragment = true }, .float, .dimension_2d, false); const bgl = engine.gpu_driver.device.createBindGroupLayout( &gpu.BindGroupLayout.Descriptor{ .entries = &.{ vbgle, fbgle, sbgle, tbgle }, }, ); const bind_group_layouts = [_]gpu.BindGroupLayout{bgl}; const pipeline_layout = engine.gpu_driver.device.createPipelineLayout(&.{ .bind_group_layouts = &bind_group_layouts, }); const pipeline_descriptor = gpu.RenderPipeline.Descriptor{ .fragment = &fragment, .layout = pipeline_layout, .depth_stencil = null, .vertex = .{ .module = vs_module, .entry_point = "main", .buffers = &.{draw.VERTEX_BUFFER_LAYOUT}, }, .multisample = .{ .count = 1, .mask = 0xFFFFFFFF, .alpha_to_coverage_enabled = false, }, .primitive = .{ .front_face = .ccw, .cull_mode = .none, .topology = .triangle_list, .strip_index_format = .none, }, }; const vertex_buffer = engine.gpu_driver.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .vertex = true }, .size = @sizeOf(draw.Vertex) * app.vertices.items.len, .mapped_at_creation = false, }); const vertex_uniform_buffer = engine.gpu_driver.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .uniform = true }, .size = @sizeOf(draw.VertexUniform), .mapped_at_creation = false, }); const frag_uniform_buffer = engine.gpu_driver.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .storage = true }, .size = @sizeOf(draw.FragUniform) * app.fragment_uniform_list.items.len, .mapped_at_creation = false, }); const sampler = engine.gpu_driver.device.createSampler(&.{ .mag_filter = .linear, .min_filter = .linear, }); const bind_group = engine.gpu_driver.device.createBindGroup( &gpu.BindGroup.Descriptor{ .layout = bgl, .entries = &.{ gpu.BindGroup.Entry.buffer(0, vertex_uniform_buffer, 0, @sizeOf(draw.VertexUniform)), gpu.BindGroup.Entry.buffer(1, frag_uniform_buffer, 0, @sizeOf(draw.FragUniform) * app.vertices.items.len / 3), gpu.BindGroup.Entry.sampler(2, sampler), gpu.BindGroup.Entry.textureView(3, texture.createView(&gpu.TextureView.Descriptor{ .dimension = .dimension_2d })), }, }, ); app.pipeline = engine.gpu_driver.device.createRenderPipeline(&pipeline_descriptor); app.queue = queue; app.vertex_buffer = vertex_buffer; app.vertex_uniform_buffer = vertex_uniform_buffer; app.frag_uniform_buffer = frag_uniform_buffer; app.bind_group = bind_group; app.update_vertex_buffer = true; app.update_vertex_uniform_buffer = true; app.update_frag_uniform_buffer = true; vs_module.release(); fs_module.release(); pipeline_layout.release(); bgl.release(); } pub fn deinit(app: *App, _: *mach.Engine) void { app.vertex_buffer.release(); app.vertex_uniform_buffer.release(); app.frag_uniform_buffer.release(); app.bind_group.release(); app.vertices.deinit(); app.fragment_uniform_list.deinit(); } pub fn update(app: *App, engine: *mach.Engine) !bool { while (engine.core.pollEvent()) |event| { switch (event) { .key_press => |ev| { if (ev.key == .space) engine.core.setShouldClose(true); }, else => {}, } } const back_buffer_view = engine.gpu_driver.swap_chain.?.getCurrentTextureView(); const color_attachment = gpu.RenderPassColorAttachment{ .view = back_buffer_view, .resolve_target = null, .clear_value = std.mem.zeroes(gpu.Color), .load_op = .clear, .store_op = .store, }; const encoder = engine.gpu_driver.device.createCommandEncoder(null); const render_pass_info = gpu.RenderPassEncoder.Descriptor{ .color_attachments = &.{color_attachment}, }; { if (app.update_vertex_buffer) { encoder.writeBuffer(app.vertex_buffer, 0, draw.Vertex, app.vertices.items); app.update_vertex_buffer = false; } if (app.update_frag_uniform_buffer) { encoder.writeBuffer(app.frag_uniform_buffer, 0, draw.FragUniform, app.fragment_uniform_list.items); app.update_frag_uniform_buffer = false; } if (app.update_vertex_uniform_buffer) { encoder.writeBuffer(app.vertex_uniform_buffer, 0, draw.VertexUniform, &.{try getVertexUniformBufferObject(engine)}); app.update_vertex_uniform_buffer = false; } } const pass = encoder.beginRenderPass(&render_pass_info); pass.setPipeline(app.pipeline); pass.setVertexBuffer(0, app.vertex_buffer, 0, @sizeOf(draw.Vertex) * app.vertices.items.len); pass.setBindGroup(0, app.bind_group, &.{ 0, 0 }); pass.draw(@truncate(u32, app.vertices.items.len), 1, 0, 0); pass.end(); pass.release(); var command = encoder.finish(null); encoder.release(); app.queue.submit(&.{command}); command.release(); engine.gpu_driver.swap_chain.?.present(); back_buffer_view.release(); return true; } pub fn resize(app: *App, _: *mach.Engine, _: u32, _: u32) !void { app.update_vertex_uniform_buffer = true; } fn rgb24ToRgba32(allocator: std.mem.Allocator, in: []zigimg.color.Rgb24) !zigimg.color.ColorStorage { const out = try zigimg.color.ColorStorage.init(allocator, .Rgba32, in.len); var i: usize = 0; while (i < in.len) : (i += 1) { out.Rgba32[i] = zigimg.color.Rgba32{ .R = in[i].R, .G = in[i].G, .B = in[i].B, .A = 255 }; } return out; } // Move to draw.zig pub fn getVertexUniformBufferObject(engine: *mach.Engine) !draw.VertexUniform { // Note: We use window width/height here, not framebuffer width/height. // On e.g. macOS, window size may be 640x480 while framebuffer size may be // 1280x960 (subpixels.) Doing this lets us use a pixel, not subpixel, // coordinate system. const window_size = try engine.core.getWindowSize(); const proj = zm.orthographicRh( @intToFloat(f32, window_size.width), @intToFloat(f32, window_size.height), -100, 100, ); const mvp = zm.mul(proj, zm.translation(-1, -1, 0)); return draw.VertexUniform{ .mat = mvp, }; }