const std = @import("std"); const mach = @import("mach"); const gpu = @import("gpu"); const glfw = @import("glfw"); const zm = @import("zmath"); const Vertex = @import("cube_mesh.zig").Vertex; const vertices = @import("cube_mesh.zig").vertices; const UniformBufferObject = struct { mat: zm.Mat, }; var timer: std.time.Timer = undefined; pipeline: gpu.RenderPipeline, queue: gpu.Queue, vertex_buffer: gpu.Buffer, uniform_buffer: gpu.Buffer, bind_group: gpu.BindGroup, const App = @This(); pub fn init(app: *App, engine: *mach.Engine) !void { timer = try std.time.Timer.start(); engine.core.internal.window.setKeyCallback(struct { fn callback(window: glfw.Window, key: glfw.Key, scancode: i32, action: glfw.Action, mods: glfw.Mods) void { _ = scancode; _ = mods; if (action == .press) { switch (key) { .space => window.setShouldClose(true), else => {}, } } } }.callback); try engine.core.internal.window.setSizeLimits(.{ .width = 20, .height = 20 }, .{ .width = null, .height = null }); const vs_module = engine.gpu_driver.device.createShaderModule(&.{ .label = "my vertex shader", .code = .{ .wgsl = @embedFile("vert.wgsl") }, }); const vertex_attributes = [_]gpu.VertexAttribute{ .{ .format = .float32x4, .offset = @offsetOf(Vertex, "pos"), .shader_location = 0 }, .{ .format = .float32x2, .offset = @offsetOf(Vertex, "uv"), .shader_location = 1 }, }; const vertex_buffer_layout = gpu.VertexBufferLayout{ .array_stride = @sizeOf(Vertex), .step_mode = .vertex, .attribute_count = vertex_attributes.len, .attributes = &vertex_attributes, }; const fs_module = engine.gpu_driver.device.createShaderModule(&.{ .label = "my fragment shader", .code = .{ .wgsl = @embedFile("frag.wgsl") }, }); const color_target = gpu.ColorTargetState{ .format = engine.gpu_driver.swap_chain_format, .blend = null, .write_mask = gpu.ColorWriteMask.all, }; const fragment = gpu.FragmentState{ .module = fs_module, .entry_point = "main", .targets = &.{color_target}, .constants = null, }; const bgle = gpu.BindGroupLayout.Entry.buffer(0, .{ .vertex = true }, .uniform, true, 0); const bgl = engine.gpu_driver.device.createBindGroupLayout( &gpu.BindGroupLayout.Descriptor{ .entries = &.{bgle}, }, ); const bind_group_layouts = [_]gpu.BindGroupLayout{bgl}; const pipeline_layout = engine.gpu_driver.device.createPipelineLayout(&.{ .bind_group_layouts = &bind_group_layouts, }); const pipeline_descriptor = gpu.RenderPipeline.Descriptor{ .fragment = &fragment, .layout = pipeline_layout, .depth_stencil = null, .vertex = .{ .module = vs_module, .entry_point = "main", .buffers = &.{vertex_buffer_layout}, }, .multisample = .{ .count = 1, .mask = 0xFFFFFFFF, .alpha_to_coverage_enabled = false, }, .primitive = .{ .front_face = .ccw, .cull_mode = .back, .topology = .triangle_list, .strip_index_format = .none, }, }; const vertex_buffer = engine.gpu_driver.device.createBuffer(&.{ .usage = .{ .vertex = true }, .size = @sizeOf(Vertex) * vertices.len, .mapped_at_creation = true, }); var vertex_mapped = vertex_buffer.getMappedRange(Vertex, 0, vertices.len); std.mem.copy(Vertex, vertex_mapped, vertices[0..]); vertex_buffer.unmap(); const x_count = 4; const y_count = 4; const num_instances = x_count * y_count; const uniform_buffer = engine.gpu_driver.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .uniform = true }, .size = @sizeOf(UniformBufferObject) * num_instances, .mapped_at_creation = false, }); defer uniform_buffer.release(); const bind_group = engine.gpu_driver.device.createBindGroup( &gpu.BindGroup.Descriptor{ .layout = bgl, .entries = &.{ gpu.BindGroup.Entry.buffer(0, uniform_buffer, 0, @sizeOf(UniformBufferObject) * num_instances), }, }, ); app.pipeline = engine.gpu_driver.device.createRenderPipeline(&pipeline_descriptor); app.queue = engine.gpu_driver.device.getQueue(); app.vertex_buffer = vertex_buffer; app.uniform_buffer = uniform_buffer; app.bind_group = bind_group; vs_module.release(); fs_module.release(); pipeline_layout.release(); bgl.release(); } pub fn deinit(app: *App, _: *mach.Engine) void { app.vertex_buffer.release(); app.bind_group.release(); } var i: u32 = 0; pub fn update(app: *App, engine: *mach.Engine) !bool { i += 1; const back_buffer_view = engine.gpu_driver.swap_chain.?.getCurrentTextureView(); const color_attachment = gpu.RenderPassColorAttachment{ .view = back_buffer_view, .resolve_target = null, .clear_value = std.mem.zeroes(gpu.Color), .load_op = .clear, .store_op = .store, }; const encoder = engine.gpu_driver.device.createCommandEncoder(null); const render_pass_info = gpu.RenderPassEncoder.Descriptor{ .color_attachments = &.{color_attachment}, }; { const proj = zm.perspectiveFovRh( (std.math.pi / 3.0), @intToFloat(f32, engine.gpu_driver.current_desc.width) / @intToFloat(f32, engine.gpu_driver.current_desc.height), 10, 30, ); var ubos: [16]UniformBufferObject = undefined; const time = @intToFloat(f32, timer.read()) / @as(f32, std.time.ns_per_s); const step: f32 = 4.0; var m: u8 = 0; var x: u8 = 0; while (x < 4) : (x += 1) { var y: u8 = 0; while (y < 4) : (y += 1) { const trans = zm.translation(step * (@intToFloat(f32, x) - 2.0 + 0.5), step * (@intToFloat(f32, y) - 2.0 + 0.5), -20); const localTime = time + @intToFloat(f32, m) * 0.5; const model = zm.mul(zm.mul(zm.mul(zm.rotationX(localTime * (std.math.pi / 2.1)), zm.rotationY(localTime * (std.math.pi / 0.9))), zm.rotationZ(localTime * (std.math.pi / 1.3))), trans); const mvp = zm.mul(model, proj); const ubo = UniformBufferObject{ .mat = mvp, }; ubos[m] = ubo; m += 1; } } encoder.writeBuffer(app.uniform_buffer, 0, UniformBufferObject, &ubos); } const pass = encoder.beginRenderPass(&render_pass_info); pass.setPipeline(app.pipeline); pass.setVertexBuffer(0, app.vertex_buffer, 0, @sizeOf(Vertex) * vertices.len); pass.setBindGroup(0, app.bind_group, &.{0}); pass.draw(vertices.len, 16, 0, 0); pass.end(); pass.release(); var command = encoder.finish(null); encoder.release(); app.queue.submit(&.{command}); command.release(); engine.gpu_driver.swap_chain.?.present(); back_buffer_view.release(); return true; }