const std = @import("std"); const mach = @import("mach"); const core = mach.core; const gpu = mach.gpu; pub const name = .editor; pub const modules = .{ mach.Engine, @This() }; pub const App = mach.App; const UniformBufferObject = struct { resolution: @Vector(2, f32), time: f32, }; var gpa = std.heap.GeneralPurposeAllocator(.{}){}; const allocator = gpa.allocator(); timer: mach.Timer, pipeline: *gpu.RenderPipeline, queue: *gpu.Queue, uniform_buffer: *gpu.Buffer, bind_group: *gpu.BindGroup, fragment_shader_file: std.fs.File, fragment_shader_code: [:0]const u8, last_mtime: i128, pub fn init(editor: *mach.Mod(.editor)) !void { core.setTitle("Mach editor"); var fragment_file: std.fs.File = undefined; var last_mtime: i128 = undefined; // TODO: there is no guarantee we are in the mach project root if (std.fs.cwd().openFile("src/editor/frag.wgsl", .{ .mode = .read_only })) |file| { fragment_file = file; if (file.stat()) |stat| { last_mtime = stat.mtime; } else |err| { std.debug.print("Something went wrong when attempting to stat file: {}\n", .{err}); return; } } else |e| { std.debug.print("Something went wrong when attempting to open file: {}\n", .{e}); return; } var code = try fragment_file.readToEndAllocOptions(allocator, std.math.maxInt(u16), null, 1, 0); const queue = core.device.getQueue(); // We need a bgl to bind the UniformBufferObject, but it is also needed for creating // the RenderPipeline, so we pass it to recreatePipeline as a pointer var bgl: *gpu.BindGroupLayout = undefined; const pipeline = recreatePipeline(code, &bgl); const uniform_buffer = core.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .uniform = true }, .size = @sizeOf(UniformBufferObject), .mapped_at_creation = .false, }); const bind_group = core.device.createBindGroup( &gpu.BindGroup.Descriptor.init(.{ .layout = bgl, .entries = &.{ gpu.BindGroup.Entry.buffer(0, uniform_buffer, 0, @sizeOf(UniformBufferObject)), }, }), ); editor.state.timer = try mach.Timer.start(); editor.state.pipeline = pipeline; editor.state.queue = queue; editor.state.uniform_buffer = uniform_buffer; editor.state.bind_group = bind_group; editor.state.fragment_shader_file = fragment_file; editor.state.fragment_shader_code = code; editor.state.last_mtime = last_mtime; bgl.release(); } pub fn deinit(editor: *mach.Mod(.editor)) !void { defer _ = gpa.deinit(); editor.state.fragment_shader_file.close(); allocator.free(editor.state.fragment_shader_code); editor.state.uniform_buffer.release(); editor.state.bind_group.release(); } pub fn tick( engine: *mach.Mod(.engine), editor: *mach.Mod(.editor), ) !void { var iter = core.pollEvents(); while (iter.next()) |event| { switch (event) { .key_press => |ev| { if (ev.key == .space) return engine.send(.exit, .{}); }, .close => return engine.send(.exit, .{}), else => {}, } } if (editor.state.fragment_shader_file.stat()) |stat| { if (editor.state.last_mtime < stat.mtime) { std.log.info("The fragment shader has been changed", .{}); editor.state.last_mtime = stat.mtime; editor.state.fragment_shader_file.seekTo(0) catch unreachable; editor.state.fragment_shader_code = editor.state.fragment_shader_file.readToEndAllocOptions(allocator, std.math.maxInt(u32), null, 1, 0) catch |err| { std.log.err("Err: {}", .{err}); return engine.send(.exit, .{}); }; editor.state.pipeline = recreatePipeline(editor.state.fragment_shader_code, null); } } else |err| { std.log.err("Something went wrong when attempting to stat file: {}\n", .{err}); } const back_buffer_view = core.swap_chain.getCurrentTextureView().?; const color_attachment = gpu.RenderPassColorAttachment{ .view = back_buffer_view, .clear_value = std.mem.zeroes(gpu.Color), .load_op = .clear, .store_op = .store, }; const encoder = core.device.createCommandEncoder(null); const render_pass_info = gpu.RenderPassDescriptor.init(.{ .color_attachments = &.{color_attachment}, }); const time = editor.state.timer.read() / @as(f32, std.time.ns_per_s); const ubo = UniformBufferObject{ .resolution = .{ @as(f32, @floatFromInt(core.descriptor.width)), @as(f32, @floatFromInt(core.descriptor.height)) }, .time = time, }; encoder.writeBuffer(editor.state.uniform_buffer, 0, &[_]UniformBufferObject{ubo}); const pass = encoder.beginRenderPass(&render_pass_info); pass.setPipeline(editor.state.pipeline); pass.setBindGroup(0, editor.state.bind_group, &.{0}); pass.draw(3, 1, 0, 0); pass.end(); pass.release(); var command = encoder.finish(null); encoder.release(); editor.state.queue.submit(&[_]*gpu.CommandBuffer{command}); command.release(); core.swap_chain.present(); back_buffer_view.release(); } fn recreatePipeline(fragment_shader_code: [:0]const u8, bgl: ?**gpu.BindGroupLayout) *gpu.RenderPipeline { const vs_module = core.device.createShaderModuleWGSL("vert.wgsl", @embedFile("vert.wgsl")); defer vs_module.release(); // Check wether the fragment shader code compiled successfully, if not // print the validation layer error and show a black screen core.device.pushErrorScope(.validation); var fs_module = core.device.createShaderModuleWGSL("fragment shader", fragment_shader_code); var error_occurred: bool = false; // popErrorScope() returns always true, (unless maybe it fails to capture the error scope?) _ = core.device.popErrorScope(&error_occurred, struct { inline fn callback(ctx: *bool, typ: gpu.ErrorType, message: [*:0]const u8) void { if (typ != .no_error) { std.debug.print("🔴🔴🔴🔴:\n{s}\n", .{message}); ctx.* = true; } } }.callback); if (error_occurred) { fs_module = core.device.createShaderModuleWGSL( "black_screen_frag.wgsl", @embedFile("black_screen_frag.wgsl"), ); } defer fs_module.release(); const blend = gpu.BlendState{}; const color_target = gpu.ColorTargetState{ .format = core.descriptor.format, .blend = &blend, .write_mask = gpu.ColorWriteMaskFlags.all, }; const fragment = gpu.FragmentState.init(.{ .module = fs_module, .entry_point = "main", .targets = &.{color_target}, }); const bgle = gpu.BindGroupLayout.Entry.buffer(0, .{ .fragment = true }, .uniform, true, 0); // bgl is needed outside, for the creation of the uniform_buffer in main const bgl_tmp = core.device.createBindGroupLayout(&gpu.BindGroupLayout.Descriptor.init(.{ .entries = &.{bgle}, })); defer { // In frame we don't need to use bgl, so we can release it inside this function, else we pass bgl if (bgl == null) { bgl_tmp.release(); } else { bgl.?.* = bgl_tmp; } } const bind_group_layouts = [_]*gpu.BindGroupLayout{bgl_tmp}; const pipeline_layout = core.device.createPipelineLayout(&gpu.PipelineLayout.Descriptor.init(.{ .bind_group_layouts = &bind_group_layouts, })); defer pipeline_layout.release(); const pipeline_descriptor = gpu.RenderPipeline.Descriptor{ .fragment = &fragment, .layout = pipeline_layout, .vertex = gpu.VertexState.init(.{ .module = vs_module, .entry_point = "main", }), }; // Create the render pipeline. Even if the shader compilation succeeded, this could fail if the // shader is missing a `main` entrypoint. core.device.pushErrorScope(.validation); const pipeline = core.device.createRenderPipeline(&pipeline_descriptor); // popErrorScope() returns always true, (unless maybe it fails to capture the error scope?) _ = core.device.popErrorScope(&error_occurred, struct { inline fn callback(ctx: *bool, typ: gpu.ErrorType, message: [*:0]const u8) void { if (typ != .no_error) { std.debug.print("🔴🔴🔴🔴:\n{s}\n", .{message}); ctx.* = true; } } }.callback); if (error_occurred) { // Retry with black_screen_frag which we know will work. return recreatePipeline(@embedFile("black_screen_frag.wgsl"), bgl); } return pipeline; }