const builtin = @import("builtin"); const std = @import("std"); const testing = @import("testing.zig"); /// Verifies that M matches the basic layout of a Mach module pub fn Module(comptime M: type) type { if (@typeInfo(M) != .Struct) @compileError("mach: expected module struct, found: " ++ @typeName(M)); if (!@hasDecl(M, "name")) @compileError("mach: module must have `pub const name = .foobar;`"); if (@typeInfo(@TypeOf(M.name)) != .EnumLiteral) @compileError("mach: module must have `pub const name = .foobar;`, found type:" ++ @typeName(M.name)); const prefix = "mach: module ." ++ @tagName(M.name) ++ " "; if (!@hasDecl(M, "events")) @compileError(prefix ++ "must have `pub const events = .{};`"); validateEvents("mach: module ." ++ @tagName(M.name) ++ " ", M.events); // TODO: move this to ecs if (@hasDecl(M, "components")) { if (@typeInfo(M.components) != .Struct) @compileError("Module.components must be `pub const components = struct { ... };`, found type:" ++ @typeName(M.components)); } return M; } // TODO: implement serialization constraints // For now this exists just to indicate things that we expect will be required to be serializable in // the future. fn Serializable(comptime T: type) type { return T; } /// Manages comptime .{A, B, C} modules and runtime modules. pub fn Modules(comptime mods: anytype) type { // Verify that each module is valid. inline for (mods) |M| _ = Module(M); return struct { /// Comptime modules pub const modules = mods; // TODO: add runtime module support pub const ModuleID = u32; pub const EventID = u32; pub const GlobalEvent = GlobalEventEnum(mods); pub const LocalEvent = LocalEventEnum(mods); const Event = struct { module_name: ?ModuleID, event_name: EventID, args_slice: []u8, }; const EventQueue = std.fifo.LinearFifo(Event, .Dynamic); events_mu: std.Thread.RwLock = .{}, args_queue: std.ArrayListUnmanaged(u8) = .{}, events: EventQueue, pub fn init(m: *@This(), allocator: std.mem.Allocator) !void { // TODO: custom event queue allocation sizes m.* = .{ .args_queue = try std.ArrayListUnmanaged(u8).initCapacity(allocator, 8 * 1024 * 1024), .events = EventQueue.init(allocator), }; errdefer m.args_queue.deinit(allocator); errdefer m.events.deinit(); try m.events.ensureTotalCapacity(1024); } pub fn deinit(m: *@This(), allocator: std.mem.Allocator) void { m.args_queue.deinit(allocator); m.events.deinit(); } /// Returns an args tuple representing the standard, uninjected, arguments which the given /// local event handler requires. fn LocalArgs(module_name: ModuleName(mods), event_name: LocalEvent) type { inline for (modules) |M| { _ = Module(M); // Validate the module if (M.name != module_name) continue; return LocalArgsM(M, event_name); } } pub fn LocalArgsM(comptime M: type, event_name: LocalEvent) type { _ = Module(M); // Validate the module inline for (M.events) |event| { const Ev = @TypeOf(event); const name_tag = if (@hasField(Ev, "local")) event.local else continue; if (name_tag != event_name) continue; const Handler = switch (@typeInfo(@TypeOf(event.handler))) { .Fn => @TypeOf(event.handler), .Type => switch (@typeInfo(event.handler)) { .Fn => event.handler, else => unreachable, }, else => unreachable, }; // TODO: passing std.meta.Tuple here instead of TupleHACK results in a compiler // segfault. The only difference is that TupleHACk does not produce a real tuple, // `@Type(.{.Struct = .{ .is_tuple = false }})` instead of `.is_tuple = true`. return UninjectedArgsTuple(TupleHACK, Handler); } @compileError("mach: module ." ++ @tagName(M.name) ++ " has no .local event handler for ." ++ @tagName(event_name)); } /// Returns an args tuple representing the standard, uninjected, arguments which the given /// global event handler requires. fn GlobalArgs(module_name: ModuleName(mods), event_name: GlobalEvent) type { inline for (modules) |M| { _ = Module(M); // Validate the module if (M.name != module_name) continue; return GlobalArgsM(M, event_name); } } pub fn GlobalArgsM(comptime M: type, event_name: GlobalEvent) type { _ = Module(M); // Validate the module inline for (M.events) |event| { const Ev = @TypeOf(event); const name_tag = if (@hasField(Ev, "global")) event.global else continue; if (name_tag != event_name) continue; const Handler = switch (@typeInfo(@TypeOf(event.handler))) { .Fn => @TypeOf(event.handler), .Type => switch (@typeInfo(event.handler)) { .Fn => event.handler, else => unreachable, }, else => unreachable, }; // TODO: passing std.meta.Tuple here instead of TupleHACK results in a compiler // segfault. The only difference is that TupleHACk does not produce a real tuple, // `@Type(.{.Struct = .{ .is_tuple = false }})` instead of `.is_tuple = true`. return UninjectedArgsTuple(TupleHACK, Handler); } @compileError("mach: module ." ++ @tagName(M.name) ++ " has no .global event handler for ." ++ @tagName(event_name)); } /// Send a global event which the specified module defines pub fn sendGlobal( m: *@This(), // TODO: is a variant of this function where event_name is not comptime known, but asserted to be a valid enum, useful? comptime module_name: ModuleName(mods), comptime event_name: GlobalEvent, args: GlobalArgs(module_name, event_name), ) void { // TODO: comptime safety/debugging m.sendInternal(null, @intFromEnum(event_name), args); } /// Send an event to a specific module pub fn sendToModule( m: *@This(), // TODO: is a variant of this function where module_name/event_name is not comptime known, but asserted to be a valid enum, useful? comptime module_name: ModuleName(mods), comptime event_name: LocalEvent, args: LocalArgs(module_name, event_name), ) void { // TODO: comptime safety/debugging m.sendInternal(@intFromEnum(module_name), @intFromEnum(event_name), args); } /// Send a global event, using a dynamic (not known to the compiled program) event name. pub fn sendDynamic(m: *@This(), event_name: EventID, args: anytype) void { // TODO: runtime safety/debugging // TODO: check args do not have obviously wrong things, like comptime values // TODO: if module_name and event_name are valid enums, can we type-check args at comptime? m.sendInternal(null, event_name, args); } /// Send an event to a specific module, using a dynamic (not known to the compiled program) module and event name. pub fn sendToModuleDynamic(m: *@This(), module_name: ModuleID, event_name: EventID, args: anytype) void { // TODO: runtime safety/debugging // TODO: check args do not have obviously wrong things, like comptime values // TODO: if module_name and event_name are valid enums, can we type-check args at comptime? m.sendInternal(module_name, event_name, args); } fn sendInternal(m: *@This(), module_name: ?ModuleID, event_name: EventID, args: anytype) void { // TODO: verify arguments are valid, e.g. not comptime types _ = Serializable(@TypeOf(args)); // TODO: debugging m.events_mu.lock(); defer m.events_mu.unlock(); const args_bytes = std.mem.asBytes(&args); m.args_queue.appendSliceAssumeCapacity(args_bytes); m.events.writeItemAssumeCapacity(.{ .module_name = module_name, .event_name = event_name, .args_slice = m.args_queue.items[m.args_queue.items.len - args_bytes.len .. m.args_queue.items.len], }); } /// Dispatches pending events, invoking their event handlers. pub fn dispatch(m: *@This(), injectable: anytype) !void { // TODO: verify injectable arguments are valid, e.g. not comptime types // TODO: optimize to reduce send contention // TODO: parallel / multi-threaded dispatch // TODO: PGO // TODO: this is wrong defer { m.events_mu.lock(); m.args_queue.clearRetainingCapacity(); m.events_mu.unlock(); } while (true) { m.events_mu.lock(); const ev = m.events.readItem() orelse { m.events_mu.unlock(); break; }; m.events_mu.unlock(); if (ev.module_name) |module_name| { // TODO: dispatch arguments try @This().callLocal(@enumFromInt(module_name), @enumFromInt(ev.event_name), ev.args_slice, injectable); } else { // TODO: dispatch arguments try @This().callGlobal(@enumFromInt(ev.event_name), ev.args_slice, injectable); } } } /// Call global event handler with the specified name in all modules inline fn callGlobal(event_name: GlobalEvent, args: []u8, injectable: anytype) !void { if (@typeInfo(@TypeOf(event_name)).Enum.fields.len == 0) return; switch (event_name) { inline else => |ev_name| { inline for (modules) |M| { _ = Module(M); // Validate the module inline for (M.events) |event| { const Ev = @TypeOf(event); const name_tag = if (@hasField(Ev, "global")) event.global else continue; if (name_tag != ev_name) continue; switch (@typeInfo(@TypeOf(event.handler))) { .Fn => try callHandler(event.handler, args, injectable), .Type => switch (@typeInfo(event.handler)) { .Fn => {}, // Pre-declaration of what args an event has, nothing to run. else => unreachable, }, else => unreachable, } } } }, } } /// Call local event handler with the specified name in the specified module inline fn callLocal(module_name: ModuleName(mods), event_name: LocalEvent, args: []u8, injectable: anytype) !void { if (@typeInfo(@TypeOf(event_name)).Enum.fields.len == 0) return; // TODO: invert switch case for hypothetically better branch prediction switch (module_name) { inline else => |mod_name| { switch (event_name) { inline else => |ev_name| { const M = @field(NamespacedModules(@This().modules){}, @tagName(mod_name)); _ = Module(M); // Validate the module inline for (M.events) |event| { const Ev = @TypeOf(event); const name_tag = if (@hasField(Ev, "local")) event.local else continue; if (name_tag != ev_name) continue; switch (@typeInfo(@TypeOf(event.handler))) { .Fn => try callHandler(event.handler, args, injectable), .Type => switch (@typeInfo(event.handler)) { .Fn => {}, // Pre-declaration of what args an event has, nothing to run. else => unreachable, }, else => unreachable, } break; } }, } }, } } /// Invokes an event handler with optionally injected arguments. inline fn callHandler(handler: anytype, args_data: []u8, injectable: anytype) !void { const Handler = @TypeOf(handler); const StdArgs = UninjectedArgsTuple(std.meta.Tuple, Handler); const std_args: *StdArgs = @alignCast(@ptrCast(args_data.ptr)); const args = injectArgs(Handler, @TypeOf(injectable), injectable, std_args.*); const Ret = @typeInfo(Handler).Fn.return_type orelse void; switch (@typeInfo(Ret)) { .ErrorUnion => try @call(.auto, handler, args), else => @call(.auto, handler, args), } } }; } // TODO: see usage location fn TupleHACK(comptime types: []const type) type { return CreateUniqueTupleHACK(types.len, types[0..types.len].*); } fn CreateUniqueTupleHACK(comptime N: comptime_int, comptime types: [N]type) type { var tuple_fields: [types.len]std.builtin.Type.StructField = undefined; inline for (types, 0..) |T, i| { @setEvalBranchQuota(10_000); var num_buf: [128]u8 = undefined; tuple_fields[i] = .{ .name = std.fmt.bufPrintZ(&num_buf, "{d}", .{i}) catch unreachable, .type = T, .default_value = null, .is_comptime = false, .alignment = if (@sizeOf(T) > 0) @alignOf(T) else 0, }; } return @Type(.{ .Struct = .{ // .is_tuple = true, .is_tuple = false, .layout = .Auto, .decls = &.{}, .fields = &tuple_fields, }, }); } // Given a function, its standard arguments and injectable arguments, performs injection and // returns the actual argument tuple which would be used to call the function. inline fn injectArgs( comptime Function: type, comptime Injectable: type, injectable_args: Injectable, std_args: UninjectedArgsTuple(std.meta.Tuple, Function), ) std.meta.ArgsTuple(Function) { var args: std.meta.ArgsTuple(Function) = undefined; comptime var std_args_index = 0; outer: inline for (@typeInfo(std.meta.ArgsTuple(Function)).Struct.fields) |arg| { // Is this a Struct or *Struct, with a `pub const IsInjectedArgument = void;` decl? If so, // it is considered an injected argument. inline for (@typeInfo(Injectable).Struct.fields) |inject_field| { if (inject_field.type == arg.type and @alignOf(inject_field.type) == @alignOf(arg.type)) { // Inject argument @field(args, arg.name) = @field(injectable_args, inject_field.name); continue :outer; } } // First standard argument @field(args, arg.name) = std_args[std_args_index]; std_args_index += 1; } return args; } // Given a function type, and an args tuple of injectable parameters, returns the set of function // parameters which would **not** be injected. fn UninjectedArgsTuple( comptime Tuple: fn (comptime types: []const type) type, comptime Function: type, ) type { var std_args: []const type = &[0]type{}; inline for (@typeInfo(std.meta.ArgsTuple(Function)).Struct.fields) |arg| { // Is this a Struct or *Struct, with a `pub const IsInjectedArgument = void;` decl? If so, // it is considered an injected argument. const is_injected = blk: { switch (@typeInfo(arg.type)) { .Struct => break :blk @hasDecl(arg.type, "IsInjectedArgument"), .Pointer => { switch (@typeInfo(std.meta.Child(arg.type))) { .Struct => break :blk @hasDecl(std.meta.Child(arg.type), "IsInjectedArgument"), else => break :blk false, } }, else => break :blk false, } }; if (is_injected) continue; // legitimate injected argument, ignore it std_args = std_args ++ [_]type{arg.type}; } return Tuple(std_args); } /// enum describing every possible comptime-known local event name fn LocalEventEnum(comptime mods: anytype) type { var enum_fields: []const std.builtin.Type.EnumField = &[0]std.builtin.Type.EnumField{}; var i: u32 = 0; for (mods) |M| { _ = Module(M); // Validate the module inline for (M.events) |event| { const Event = @TypeOf(event); const name_tag = if (@hasField(Event, "local")) event.local else continue; const exists_already = blk: { for (enum_fields) |existing| if (std.mem.eql(u8, existing.name, @tagName(name_tag))) break :blk true; break :blk false; }; if (!exists_already) { enum_fields = enum_fields ++ [_]std.builtin.Type.EnumField{.{ .name = @tagName(name_tag), .value = i }}; i += 1; } } } return @Type(.{ .Enum = .{ .tag_type = if (enum_fields.len > 0) std.math.IntFittingRange(0, enum_fields.len - 1) else u0, .fields = enum_fields, .decls = &[_]std.builtin.Type.Declaration{}, .is_exhaustive = true, }, }); } /// enum describing every possible comptime-known global event name fn GlobalEventEnum(comptime mods: anytype) type { var enum_fields: []const std.builtin.Type.EnumField = &[0]std.builtin.Type.EnumField{}; var i: u32 = 0; for (mods) |M| { _ = Module(M); // Validate the module inline for (M.events) |event| { const Event = @TypeOf(event); const name_tag = if (@hasField(Event, "global")) event.global else continue; const exists_already = blk: { for (enum_fields) |existing| if (std.mem.eql(u8, existing.name, @tagName(name_tag))) break :blk true; break :blk false; }; if (!exists_already) { enum_fields = enum_fields ++ [_]std.builtin.Type.EnumField{.{ .name = @tagName(name_tag), .value = i }}; i += 1; } } } return @Type(.{ .Enum = .{ .tag_type = if (enum_fields.len > 0) std.math.IntFittingRange(0, enum_fields.len - 1) else u0, .fields = enum_fields, .decls = &[_]std.builtin.Type.Declaration{}, .is_exhaustive = true, }, }); } /// enum describing every possible comptime-known module name fn ModuleName(comptime mods: anytype) type { var enum_fields: []const std.builtin.Type.EnumField = &[0]std.builtin.Type.EnumField{}; for (mods, 0..) |M, i| { enum_fields = enum_fields ++ [_]std.builtin.Type.EnumField{.{ .name = @tagName(M.name), .value = i }}; } return @Type(.{ .Enum = .{ .tag_type = std.math.IntFittingRange(0, enum_fields.len - 1), .fields = enum_fields, .decls = &[_]std.builtin.Type.Declaration{}, .is_exhaustive = true, }, }); } /// Struct like .{.foo = FooMod, .bar = BarMod} fn NamespacedModules(comptime modules: anytype) type { var fields: []const std.builtin.Type.StructField = &[0]std.builtin.Type.StructField{}; inline for (modules) |M| { fields = fields ++ [_]std.builtin.Type.StructField{.{ .name = @tagName(M.name), .type = type, .default_value = &M, .is_comptime = true, .alignment = @alignOf(@TypeOf(M)), }}; } return @Type(.{ .Struct = .{ .layout = .Auto, .is_tuple = false, .fields = fields, .decls = &[_]std.builtin.Type.Declaration{}, }, }); } fn validateEvents(comptime error_prefix: anytype, comptime events: anytype) void { if (@typeInfo(@TypeOf(events)) != .Struct or !@typeInfo(@TypeOf(events)).Struct.is_tuple) { @compileError(error_prefix ++ "expected a tuple of structs, found: " ++ @typeName(@TypeOf(events))); } inline for (events, 0..) |event, i| { const Event = @TypeOf(event); if (@typeInfo(Event) != .Struct) @compileError(std.fmt.comptimePrint( error_prefix ++ "expected a tuple of structs, found tuple element ({}): {s}", .{ i, @typeName(Event) }, )); // Verify .global = .foo, or .local = .foo, event handler name field const name_tag = if (@hasField(Event, "global")) event.global else if (@hasField(Event, "local")) event.local else @compileError(std.fmt.comptimePrint( error_prefix ++ "tuple element ({}) missing field `.global = .foo` or `.local = .foo` (event handler kind / name)", .{i}, )); const is_global = if (@hasField(Event, "global")) true else false; if (@typeInfo(@TypeOf(name_tag)) != .EnumLiteral) @compileError(std.fmt.comptimePrint( error_prefix ++ "tuple element ({}) expected field `.{s} = .foo`, found: {s}", .{ i, if (is_global) "global" else "local", @typeName(@TypeOf(name_tag)) }, )); // Verify .handler = fn, field if (!@hasField(Event, "handler")) @compileError(std.fmt.comptimePrint( error_prefix ++ "tuple element ({}) missing field `.handler = fn`", .{i}, )); const valid_handler_type = switch (@typeInfo(@TypeOf(event.handler))) { .Fn => true, .Type => switch (@typeInfo(event.handler)) { .Fn => true, else => false, }, else => false, }; if (!valid_handler_type) @compileError(std.fmt.comptimePrint( error_prefix ++ "tuple element ({}) expected field `.handler = fn`, found: {s}", .{ i, @typeName(@TypeOf(event.handler)) }, )); } } test { testing.refAllDeclsRecursive(@This()); } test Module { _ = Module(struct { // Physics module state pointer: usize, // Globally unique module name pub const name = .engine_physics; /// Physics module components pub const components = struct { /// A location component pub const location = @Vector(3, f32); }; pub const events = .{ .{ .global = .tick, .handler = tick }, }; fn tick() !void {} }); } test Modules { const Physics = Module(struct { // Physics module state pointer: usize, // Globally unique module name pub const name = .engine_physics; /// Physics module components pub const components = struct { /// A location component pub const location = @Vector(3, f32); }; pub const events = .{ .{ .global = .tick, .handler = tick }, }; fn tick() !void {} }); const Renderer = Module(struct { pub const name = .engine_renderer; pub const events = .{ .{ .global = .tick, .handler = tick }, }; /// Renderer module components pub const components = struct {}; fn tick() !void {} }); const Sprite2D = Module(struct { pub const name = .engine_sprite2d; pub const events = .{}; }); var modules: Modules(.{ Physics, Renderer, Sprite2D, }) = undefined; try modules.init(testing.allocator); defer modules.deinit(testing.allocator); testing.refAllDeclsRecursive(Physics); testing.refAllDeclsRecursive(Renderer); testing.refAllDeclsRecursive(Sprite2D); } test "event name" { const Physics = Module(struct { pub const name = .engine_physics; pub const components = struct {}; pub const events = .{ .{ .global = .foo, .handler = foo }, .{ .global = .bar, .handler = bar }, .{ .local = .baz, .handler = baz }, .{ .local = .bam, .handler = bam }, }; fn foo() !void {} fn bar() !void {} fn baz() !void {} fn bam() !void {} }); const Renderer = Module(struct { pub const name = .engine_renderer; pub const components = struct {}; pub const events = .{ .{ .global = .foo_unused, .handler = fn (f32, i32) void }, .{ .global = .bar_unused, .handler = fn (i32, f32) void }, .{ .global = .tick, .handler = tick }, .{ .global = .foo, .handler = foo }, .{ .global = .bar, .handler = bar }, }; fn tick() !void {} fn foo() !void {} // same .foo name as .engine_physics.foo fn bar() !void {} // same .bar name as .engine_physics.bar }); const Sprite2D = Module(struct { pub const name = .engine_sprite2d; pub const events = .{ .{ .global = .tick, .handler = tick }, .{ .global = .foobar, .handler = foobar }, }; fn tick() void {} // same .tick as .engine_renderer.tick fn foobar() void {} }); const Mods = Modules(.{ Physics, Renderer, Sprite2D, }); const locals = @typeInfo(Mods.LocalEvent).Enum; try testing.expect(type, u1).eql(locals.tag_type); try testing.expect(usize, 2).eql(locals.fields.len); try testing.expect([]const u8, "baz").eql(locals.fields[0].name); try testing.expect([]const u8, "bam").eql(locals.fields[1].name); const globals = @typeInfo(Mods.GlobalEvent).Enum; try testing.expect(type, u3).eql(globals.tag_type); try testing.expect(usize, 6).eql(globals.fields.len); try testing.expect([]const u8, "foo").eql(globals.fields[0].name); try testing.expect([]const u8, "bar").eql(globals.fields[1].name); try testing.expect([]const u8, "foo_unused").eql(globals.fields[2].name); try testing.expect([]const u8, "bar_unused").eql(globals.fields[3].name); try testing.expect([]const u8, "tick").eql(globals.fields[4].name); try testing.expect([]const u8, "foobar").eql(globals.fields[5].name); } test ModuleName { const Physics = Module(struct { pub const name = .engine_physics; pub const events = .{}; }); const Renderer = Module(struct { pub const name = .engine_renderer; pub const events = .{}; }); const Sprite2D = Module(struct { pub const name = .engine_sprite2d; pub const events = .{}; }); const Mods = Modules(.{ Physics, Renderer, Sprite2D, }); const info = @typeInfo(ModuleName(Mods.modules)).Enum; try testing.expect(type, u2).eql(info.tag_type); try testing.expect(usize, 3).eql(info.fields.len); try testing.expect([]const u8, "engine_physics").eql(info.fields[0].name); try testing.expect([]const u8, "engine_renderer").eql(info.fields[1].name); try testing.expect([]const u8, "engine_sprite2d").eql(info.fields[2].name); } // TODO: remove this in favor of testing.expect const TupleTester = struct { fn assertTypeEqual(comptime Expected: type, comptime Actual: type) void { if (Expected != Actual) @compileError("Expected type " ++ @typeName(Expected) ++ ", but got type " ++ @typeName(Actual)); } fn assertTuple(comptime expected: anytype, comptime Actual: type) void { const info = @typeInfo(Actual); if (info != .Struct) @compileError("Expected struct type"); if (!info.Struct.is_tuple) @compileError("Struct type must be a tuple type"); const fields_list = std.meta.fields(Actual); if (expected.len != fields_list.len) @compileError("Argument count mismatch"); inline for (fields_list, 0..) |fld, i| { if (expected[i] != fld.type) { @compileError("Field " ++ fld.name ++ " expected to be type " ++ @typeName(expected[i]) ++ ", but was type " ++ @typeName(fld.type)); } } } }; test injectArgs { // Injected arguments should generally be *struct types to avoid conflicts with any user-passed // parameters, though we do not require it - so we test with other types here. const Foo = struct { foo: f32, pub const IsInjectedArgument = void; }; const Bar = struct { bar: i32, pub const IsInjectedArgument = void; }; const Baz = struct { baz: bool, pub const IsInjectedArgument = void; }; var foo = Foo{ .foo = 0.1234 }; var bar = Bar{ .bar = 1234 }; var baz = Baz{ .baz = true }; const foo_ptr = &foo; const bar_ptr = &bar; const baz_ptr = &baz; // No standard, no injected try testing.expect(struct {}, .{}).eql(injectArgs(fn () void, @TypeOf(.{}), .{}, .{})); const injectable = .{ foo_ptr, bar_ptr, baz_ptr }; try testing.expect(struct {}, .{}).eql(injectArgs(fn () void, @TypeOf(injectable), injectable, .{})); // Standard parameters only, no injected try testing.expect(std.meta.Tuple(&.{i32}), .{0}).eql(injectArgs(fn (a: i32) void, @TypeOf(injectable), injectable, .{0})); try testing.expect(std.meta.Tuple(&.{ i32, f32 }), .{ 1, 0.5 }).eql(injectArgs(fn (a: i32, b: f32) void, @TypeOf(injectable), injectable, .{ 1, 0.5 })); // Injected parameters only, no standard try testing.expect(std.meta.Tuple(&.{*Foo}), .{foo_ptr}).eql(injectArgs(fn (a: *Foo) void, @TypeOf(injectable), injectable, .{})); try testing.expect(std.meta.Tuple(&.{ *Foo, *Bar }), .{ foo_ptr, bar_ptr }).eql(injectArgs(fn (a: *Foo, b: *Bar) void, @TypeOf(injectable), injectable, .{})); try testing.expect(std.meta.Tuple(&.{ *Foo, *Bar, *Baz }), .{ foo_ptr, bar_ptr, baz_ptr }).eql(injectArgs(fn (a: *Foo, b: *Bar, c: *Baz) void, @TypeOf(injectable), injectable, .{})); try testing.expect(std.meta.Tuple(&.{ *Bar, *Baz, *Foo }), .{ bar_ptr, baz_ptr, foo_ptr }).eql(injectArgs(fn (a: *Bar, b: *Baz, c: *Foo) void, @TypeOf(injectable), injectable, .{})); try testing.expect(std.meta.Tuple(&.{ *Foo, *Foo, *Baz }), .{ foo_ptr, foo_ptr, baz_ptr }).eql(injectArgs(fn (a: *Foo, b: *Foo, c: *Baz) void, @TypeOf(injectable), injectable, .{})); // As long as the argument is a Struct or *Struct with an IsInjectedArgument decl, it is // considered an injected argument. // try testing.expect(std.meta.Tuple(&.{*const Foo}), .{foo_ptr}).eql(injectArgs(fn (a: *const Foo) void, @TypeOf(injectable), injectable, .{})); const injectable2 = .{ foo, foo_ptr, bar_ptr, baz_ptr }; try testing.expect(std.meta.Tuple(&.{Foo}), .{foo_ptr.*}).eql(injectArgs(fn (a: Foo) void, @TypeOf(injectable2), injectable2, .{})); // Order doesn't matter, injected arguments can be placed inbetween any standard arguments, etc. try testing.expect(std.meta.Tuple(&.{ i32, *Foo, *Foo, *Baz }), .{ 1337, foo_ptr, foo_ptr, baz_ptr }).eql(injectArgs(fn (z: i32, a: *Foo, b: *Foo, c: *Baz) void, @TypeOf(injectable), injectable, .{1337})); try testing.expect(std.meta.Tuple(&.{ i32, *Foo, f32, *Foo, *Baz }), .{ 1337, foo_ptr, 1.337, foo_ptr, baz_ptr }).eql(injectArgs(fn (z: i32, a: *Foo, w: f32, b: *Foo, c: *Baz) void, @TypeOf(injectable), injectable, .{ 1337, 1.337 })); try testing.expect(std.meta.Tuple(&.{ i32, f32, *Foo, *Foo, *Baz }), .{ 1337, 1.337, foo_ptr, foo_ptr, baz_ptr }).eql(injectArgs(fn (z: i32, w: f32, a: *Foo, b: *Foo, c: *Baz) void, @TypeOf(injectable), injectable, .{ 1337, 1.337 })); try testing.expect(std.meta.Tuple(&.{ *Foo, *Foo, *Baz, i32, f32 }), .{ foo_ptr, foo_ptr, baz_ptr, 1337, 1.337 }).eql(injectArgs(fn (az: *Foo, b: *Foo, c: *Baz, z: i32, w: f32) void, @TypeOf(injectable), injectable, .{ 1337, 1.337 })); } test UninjectedArgsTuple { const Foo = struct { foo: f32, pub const IsInjectedArgument = void; }; const Bar = struct { bar: bool, pub const IsInjectedArgument = void; }; // No standard, no injected TupleTester.assertTuple(.{}, UninjectedArgsTuple(std.meta.Tuple, fn () void)); TupleTester.assertTuple(.{}, UninjectedArgsTuple(std.meta.Tuple, fn () void)); // Standard parameters only, no injected TupleTester.assertTuple(.{i32}, UninjectedArgsTuple(std.meta.Tuple, fn (a: i32) void)); TupleTester.assertTuple(.{ i32, f32 }, UninjectedArgsTuple(std.meta.Tuple, fn (a: i32, b: f32) void)); // Injected parameters only, no standard TupleTester.assertTuple(.{}, UninjectedArgsTuple(std.meta.Tuple, fn (a: *Foo) void)); TupleTester.assertTuple(.{}, UninjectedArgsTuple(std.meta.Tuple, fn (a: *Bar) void)); // As long as the argument is a Struct or *Struct with an IsInjectedArgument decl, it is // considered an injected argument. TupleTester.assertTuple(.{}, UninjectedArgsTuple(std.meta.Tuple, fn (a: *Foo, b: *Bar, c: Foo, d: Bar) void)); TupleTester.assertTuple(.{}, UninjectedArgsTuple(std.meta.Tuple, fn (a: Foo) void)); TupleTester.assertTuple(.{}, UninjectedArgsTuple(std.meta.Tuple, fn (a: Bar) void)); TupleTester.assertTuple(.{}, UninjectedArgsTuple(std.meta.Tuple, fn (a: *const Foo) void)); TupleTester.assertTuple(.{}, UninjectedArgsTuple(std.meta.Tuple, fn (a: *const Bar) void)); // Order doesn't matter, injected arguments can be placed inbetween any standard arguments, etc. TupleTester.assertTuple(.{ f32, bool }, UninjectedArgsTuple(std.meta.Tuple, fn (i: f32, a: *Foo, k: bool, b: *Bar, c: Foo, d: Bar) void)); TupleTester.assertTuple(.{f32}, UninjectedArgsTuple(std.meta.Tuple, fn (i: f32, a: *Foo, b: *Bar, c: Foo, d: Bar) void)); TupleTester.assertTuple(.{f32}, UninjectedArgsTuple(std.meta.Tuple, fn (a: *Foo, i: f32, b: *Bar, c: Foo, d: Bar) void)); TupleTester.assertTuple(.{f32}, UninjectedArgsTuple(std.meta.Tuple, fn (a: *Foo, b: *Bar, i: f32, c: Foo, d: Bar) void)); TupleTester.assertTuple(.{f32}, UninjectedArgsTuple(std.meta.Tuple, fn (a: *Foo, b: *Bar, c: Foo, i: f32, d: Bar) void)); TupleTester.assertTuple(.{f32}, UninjectedArgsTuple(std.meta.Tuple, fn (a: *Foo, b: *Bar, c: Foo, d: Bar, i: f32) void)); } test "event name calling" { // TODO: verify that event handlers error return signatures are correct const global = struct { var ticks: usize = 0; var physics_updates: usize = 0; var physics_calc: usize = 0; var renderer_updates: usize = 0; }; const Physics = Module(struct { pub const name = .engine_physics; pub const components = struct {}; pub const events = .{ .{ .global = .tick, .handler = tick }, .{ .local = .update, .handler = update }, .{ .local = .calc, .handler = calc }, }; fn tick() void { global.ticks += 1; } fn update() void { global.physics_updates += 1; } fn calc() void { global.physics_calc += 1; } }); const Renderer = Module(struct { pub const name = .engine_renderer; pub const components = struct {}; pub const events = .{ .{ .global = .tick, .handler = tick }, .{ .local = .update, .handler = update }, }; fn tick() void { global.ticks += 1; } fn update() void { global.renderer_updates += 1; } }); var modules: Modules(.{ Physics, Renderer, }) = undefined; try modules.init(testing.allocator); defer modules.deinit(testing.allocator); try @TypeOf(modules).callGlobal(.tick, &.{}, .{}); try testing.expect(usize, 2).eql(global.ticks); // Check we can use .callGlobal() with a runtime-known event name. const alloc = try testing.allocator.create(u3); defer testing.allocator.destroy(alloc); const GE = @TypeOf(modules).GlobalEvent; const LE = @TypeOf(modules).LocalEvent; alloc.* = @intFromEnum(@as(GE, .tick)); const global_event_name = @as(GE, @enumFromInt(alloc.*)); try @TypeOf(modules).callGlobal(global_event_name, &.{}, .{}); try testing.expect(usize, 4).eql(global.ticks); // Check we can use .callLocal() with a runtime-known event and module name. const m_alloc = try testing.allocator.create(u3); defer testing.allocator.destroy(m_alloc); const M = ModuleName(@TypeOf(modules).modules); m_alloc.* = @intFromEnum(@as(M, .engine_renderer)); alloc.* = @intFromEnum(@as(LE, .update)); var module_name = @as(M, @enumFromInt(m_alloc.*)); var local_event_name = @as(LE, @enumFromInt(alloc.*)); try @TypeOf(modules).callLocal(module_name, local_event_name, &.{}, .{}); try @TypeOf(modules).callLocal(module_name, local_event_name, &.{}, .{}); try testing.expect(usize, 4).eql(global.ticks); try testing.expect(usize, 0).eql(global.physics_updates); try testing.expect(usize, 2).eql(global.renderer_updates); m_alloc.* = @intFromEnum(@as(M, .engine_physics)); alloc.* = @intFromEnum(@as(LE, .update)); module_name = @as(M, @enumFromInt(m_alloc.*)); local_event_name = @as(LE, @enumFromInt(alloc.*)); try @TypeOf(modules).callLocal(module_name, local_event_name, &.{}, .{}); try testing.expect(usize, 1).eql(global.physics_updates); m_alloc.* = @intFromEnum(@as(M, .engine_physics)); alloc.* = @intFromEnum(@as(LE, .calc)); module_name = @as(M, @enumFromInt(m_alloc.*)); local_event_name = @as(LE, @enumFromInt(alloc.*)); try @TypeOf(modules).callLocal(module_name, local_event_name, &.{}, .{}); try testing.expect(usize, 4).eql(global.ticks); try testing.expect(usize, 1).eql(global.physics_calc); try testing.expect(usize, 1).eql(global.physics_updates); try testing.expect(usize, 2).eql(global.renderer_updates); } test "dispatch" { const global = struct { var ticks: usize = 0; var physics_updates: usize = 0; var physics_calc: usize = 0; var renderer_updates: usize = 0; var basic_args_sum: usize = 0; }; var foo = struct { injected_args_sum: usize = 0, pub const IsInjectedArgument = void; }{}; const Minimal = Module(struct { pub const name = .engine_minimal; pub const events = .{}; }); const Physics = Module(struct { pub const name = .engine_physics; pub const components = struct {}; pub const events = .{ .{ .global = .tick, .handler = tick }, .{ .local = .update, .handler = update }, .{ .local = .calc, .handler = calc }, }; fn tick() void { global.ticks += 1; } fn update() void { global.physics_updates += 1; } fn calc() void { global.physics_calc += 1; } }); const Renderer = Module(struct { pub const name = .engine_renderer; pub const components = struct {}; pub const events = .{ .{ .global = .tick, .handler = tick }, .{ .global = .frame_done, .handler = fn (i32) void }, .{ .local = .update, .handler = update }, .{ .local = .basic_args, .handler = basicArgs }, .{ .local = .injected_args, .handler = injectedArgs }, }; pub const frameDone = fn (i32) void; fn tick() void { global.ticks += 1; } fn update() void { global.renderer_updates += 1; } fn basicArgs(a: u32, b: u32) void { global.basic_args_sum = a + b; } fn injectedArgs(foo_ptr: *@TypeOf(foo), a: u32, b: u32) void { foo_ptr.*.injected_args_sum = a + b; } }); var modules: Modules(.{ Minimal, Physics, Renderer, }) = undefined; try modules.init(testing.allocator); defer modules.deinit(testing.allocator); const GE = @TypeOf(modules).GlobalEvent; const LE = @TypeOf(modules).LocalEvent; const M = ModuleName(@TypeOf(modules).modules); // Global events // // The 2nd parameter (arguments to the tick event handler) is inferred based on the `pub fn tick` // global event handler declaration within a module. It is required that all global event handlers // of the same name have the same standard arguments, although they can start with different // injected arguments. modules.sendGlobal(.tick, .{}); try testing.expect(usize, 0).eql(global.ticks); try modules.dispatch(.{&foo}); try testing.expect(usize, 2).eql(global.ticks); // TODO: make sendDynamic take an args type to avoid footguns with comptime values, etc. modules.sendDynamic(@intFromEnum(@as(GE, .tick)), .{}); try modules.dispatch(.{&foo}); try testing.expect(usize, 4).eql(global.ticks); // Global events which are not handled by anyone yet can be written as `pub const fooBar = fn() void;` // within a module, which allows pre-declaring that `fooBar` is a valid global event, and enables // its arguments to be inferred still like this: modules.sendGlobal(.frame_done, .{ .@"0" = 1337 }); // Local events modules.sendToModule(.engine_renderer, .update, .{}); try modules.dispatch(.{&foo}); try testing.expect(usize, 1).eql(global.renderer_updates); modules.sendToModule(.engine_physics, .update, .{}); modules.sendToModuleDynamic( @intFromEnum(@as(M, .engine_physics)), @intFromEnum(@as(LE, .calc)), .{}, ); try modules.dispatch(.{&foo}); try testing.expect(usize, 1).eql(global.physics_updates); try testing.expect(usize, 1).eql(global.physics_calc); // Local events modules.sendToModule(.engine_renderer, .basic_args, .{ .@"0" = @as(u32, 1), .@"1" = @as(u32, 2) }); // TODO: match arguments against fn ArgsTuple, for correctness and type inference modules.sendToModule(.engine_renderer, .injected_args, .{ .@"0" = @as(u32, 1), .@"1" = @as(u32, 2) }); try modules.dispatch(.{&foo}); try testing.expect(usize, 3).eql(global.basic_args_sum); try testing.expect(usize, 3).eql(foo.injected_args_sum); }