const mach = @import("../main.zig"); const testing = mach.testing; const math = mach.math; const vec = @import("vec.zig"); pub fn Mat2x2( comptime Scalar: type, ) type { return extern struct { /// The column vectors of the matrix. /// /// Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/). /// The translation vector is stored in contiguous memory elements 12, 13, 14: /// /// ``` /// [4]Vec4{ /// vec4( 1, 0, 0, 0), /// vec4( 0, 1, 0, 0), /// vec4( 0, 0, 1, 0), /// vec4(tx, ty, tz, tw), /// } /// ``` /// /// Use the init() constructor to write code which visually matches the same layout as you'd /// see used in scientific / maths communities. v: [cols]Vec, /// The number of columns, e.g. Mat3x4.cols == 3 pub const cols = 2; /// The number of rows, e.g. Mat3x4.rows == 4 pub const rows = 2; /// The scalar type of this matrix, e.g. Mat3x3.T == f32 pub const T = Scalar; /// The underlying Vec type, e.g. Mat3x3.Vec == Vec3 pub const Vec = vec.Vec2(Scalar); /// The Vec type corresponding to the number of rows, e.g. Mat3x3.RowVec == Vec3 pub const RowVec = Vec; /// The Vec type corresponding to the numebr of cols, e.g. Mat3x4.ColVec = Vec4 pub const ColVec = Vec; const Matrix = @This(); const Shared = MatShared(RowVec, ColVec, Matrix); /// Identity matrix pub const ident = Matrix.init( &RowVec.init(1, 0), &RowVec.init(0, 1), ); /// Constructs a 2x2 matrix with the given rows. For example to write a translation /// matrix like in the left part of this equation: /// /// ``` /// |1 tx| |x | |x+y*tx| /// |0 ty| |y=1| = |ty | /// ``` /// /// You would write it with the same visual layout: /// /// ``` /// const m = Mat2x2.init( /// vec3(1, tx), /// vec3(0, ty), /// ); /// ``` /// /// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/). pub inline fn init(r0: *const RowVec, r1: *const RowVec) Matrix { return .{ .v = [_]Vec{ Vec.init(r0.x(), r1.x()), Vec.init(r0.y(), r1.y()), } }; } /// Returns the row `i` of the matrix. pub inline fn row(m: *const Matrix, i: usize) RowVec { // Note: we inline RowVec.init manually here as it is faster in debug builds. // return RowVec.init(m.v[0].v[i], m.v[1].v[i]); return .{ .v = .{ m.v[0].v[i], m.v[1].v[i] } }; } /// Returns the column `i` of the matrix. pub inline fn col(m: *const Matrix, i: usize) RowVec { // Note: we inline RowVec.init manually here as it is faster in debug builds. // return RowVec.init(m.v[i].v[0], m.v[i].v[1]); return .{ .v = .{ m.v[i].v[0], m.v[i].v[1] } }; } /// Transposes the matrix. pub inline fn transpose(m: *const Matrix) Matrix { return .{ .v = [_]Vec{ Vec.init(m.v[0].v[0], m.v[1].v[0]), Vec.init(m.v[0].v[1], m.v[1].v[1]), } }; } /// Constructs a 1D matrix which scales each dimension by the given scalar. pub inline fn scaleScalar(t: Vec.T) Matrix { return init( &RowVec.init(t, 0), &RowVec.init(0, 1), ); } /// Constructs a 1D matrix which translates coordinates by the given scalar. pub inline fn translateScalar(t: Vec.T) Matrix { return init( &RowVec.init(1, t), &RowVec.init(0, 1), ); } pub const mul = Shared.mul; pub const mulVec = Shared.mulVec; }; } pub fn Mat3x3( comptime Scalar: type, ) type { return extern struct { /// The column vectors of the matrix. /// /// Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/). /// The translation vector is stored in contiguous memory elements 12, 13, 14: /// /// ``` /// [4]Vec4{ /// vec4( 1, 0, 0, 0), /// vec4( 0, 1, 0, 0), /// vec4( 0, 0, 1, 0), /// vec4(tx, ty, tz, tw), /// } /// ``` /// /// Use the init() constructor to write code which visually matches the same layout as you'd /// see used in scientific / maths communities. v: [cols]Vec, /// The number of columns, e.g. Mat3x4.cols == 3 pub const cols = 3; /// The number of rows, e.g. Mat3x4.rows == 4 pub const rows = 3; /// The scalar type of this matrix, e.g. Mat3x3.T == f32 pub const T = Scalar; /// The underlying Vec type, e.g. Mat3x3.Vec == Vec3 pub const Vec = vec.Vec3(Scalar); /// The Vec type corresponding to the number of rows, e.g. Mat3x3.RowVec == Vec3 pub const RowVec = Vec; /// The Vec type corresponding to the numebr of cols, e.g. Mat3x4.ColVec = Vec4 pub const ColVec = Vec; const Matrix = @This(); const Shared = MatShared(RowVec, ColVec, Matrix); /// Identity matrix pub const ident = Matrix.init( &RowVec.init(1, 0, 0), &RowVec.init(0, 1, 0), &RowVec.init(0, 0, 1), ); /// Constructs a 3x3 matrix with the given rows. For example to write a translation /// matrix like in the left part of this equation: /// /// ``` /// |1 0 tx| |x | |x+z*tx| /// |0 1 ty| |y | = |y+z*ty| /// |0 0 tz| |z=1| |tz | /// ``` /// /// You would write it with the same visual layout: /// /// ``` /// const m = Mat3x3.init( /// vec3(1, 0, tx), /// vec3(0, 1, ty), /// vec3(0, 0, tz), /// ); /// ``` /// /// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/). pub inline fn init(r0: *const RowVec, r1: *const RowVec, r2: *const RowVec) Matrix { return .{ .v = [_]Vec{ Vec.init(r0.x(), r1.x(), r2.x()), Vec.init(r0.y(), r1.y(), r2.y()), Vec.init(r0.z(), r1.z(), r2.z()), } }; } /// Returns the row `i` of the matrix. pub inline fn row(m: *const Matrix, i: usize) RowVec { // Note: we inline RowVec.init manually here as it is faster in debug builds. // return RowVec.init(m.v[0].v[i], m.v[1].v[i], m.v[2].v[i]); return .{ .v = .{ m.v[0].v[i], m.v[1].v[i], m.v[2].v[i] } }; } /// Returns the column `i` of the matrix. pub inline fn col(m: *const Matrix, i: usize) RowVec { // Note: we inline RowVec.init manually here as it is faster in debug builds. // return RowVec.init(m.v[i].v[0], m.v[i].v[1], m.v[i].v[2]); return .{ .v = .{ m.v[i].v[0], m.v[i].v[1], m.v[i].v[2] } }; } /// Transposes the matrix. pub inline fn transpose(m: *const Matrix) Matrix { return .{ .v = [_]Vec{ Vec.init(m.v[0].v[0], m.v[1].v[0], m.v[2].v[0]), Vec.init(m.v[0].v[1], m.v[1].v[1], m.v[2].v[1]), Vec.init(m.v[0].v[2], m.v[1].v[2], m.v[2].v[2]), } }; } /// Constructs a 2D matrix which scales each dimension by the given vector. pub inline fn scale(s: math.Vec2) Matrix { return init( &RowVec.init(s.x(), 0, 0), &RowVec.init(0, s.y(), 0), &RowVec.init(0, 0, 1), ); } /// Constructs a 2D matrix which scales each dimension by the given scalar. pub inline fn scaleScalar(t: Vec.T) Matrix { return scale(math.Vec2.splat(t)); } /// Constructs a 2D matrix which translates coordinates by the given vector. pub inline fn translate(t: math.Vec2) Matrix { return init( &RowVec.init(1, 0, t.x()), &RowVec.init(0, 1, t.y()), &RowVec.init(0, 0, 1), ); } /// Constructs a 2D matrix which translates coordinates by the given scalar. pub inline fn translateScalar(t: Vec.T) Matrix { return translate(math.Vec2.splat(t)); } /// Returns the translation component of the matrix. pub inline fn translation(t: Matrix) math.Vec2 { return math.Vec2.init(t.v[2].x(), t.v[2].y()); } pub const mul = Shared.mul; pub const mulVec = Shared.mulVec; }; } pub fn Mat4x4( comptime Scalar: type, ) type { return extern struct { /// The column vectors of the matrix. /// /// Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/). /// The translation vector is stored in contiguous memory elements 12, 13, 14: /// /// ``` /// [4]Vec4{ /// vec4( 1, 0, 0, 0), /// vec4( 0, 1, 0, 0), /// vec4( 0, 0, 1, 0), /// vec4(tx, ty, tz, tw), /// } /// ``` /// /// Use the init() constructor to write code which visually matches the same layout as you'd /// see used in scientific / maths communities. v: [cols]Vec, /// The number of columns, e.g. Mat3x4.cols == 3 pub const cols = 4; /// The number of rows, e.g. Mat3x4.rows == 4 pub const rows = 4; /// The scalar type of this matrix, e.g. Mat3x3.T == f32 pub const T = Scalar; /// The underlying Vec type, e.g. Mat3x3.Vec == Vec3 pub const Vec = vec.Vec4(Scalar); /// The Vec type corresponding to the number of rows, e.g. Mat3x3.RowVec == Vec3 pub const RowVec = Vec; /// The Vec type corresponding to the numebr of cols, e.g. Mat3x4.ColVec = Vec4 pub const ColVec = Vec; const Matrix = @This(); const Shared = MatShared(RowVec, ColVec, Matrix); /// Identity matrix pub const ident = Matrix.init( &Vec.init(1, 0, 0, 0), &Vec.init(0, 1, 0, 0), &Vec.init(0, 0, 1, 0), &Vec.init(0, 0, 0, 1), ); /// Constructs a 4x4 matrix with the given rows. For example to write a translation /// matrix like in the left part of this equation: /// /// ``` /// |1 0 0 tx| |x | |x+w*tx| /// |0 1 0 ty| |y | = |y+w*ty| /// |0 0 1 tz| |z | |z+w*tz| /// |0 0 0 tw| |w=1| |tw | /// ``` /// /// You would write it with the same visual layout: /// /// ``` /// const m = Mat4x4.init( /// &vec4(1, 0, 0, tx), /// &vec4(0, 1, 0, ty), /// &vec4(0, 0, 1, tz), /// &vec4(0, 0, 0, tw), /// ); /// ``` /// /// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/). pub inline fn init(r0: *const RowVec, r1: *const RowVec, r2: *const RowVec, r3: *const RowVec) Matrix { return .{ .v = [_]Vec{ Vec.init(r0.x(), r1.x(), r2.x(), r3.x()), Vec.init(r0.y(), r1.y(), r2.y(), r3.y()), Vec.init(r0.z(), r1.z(), r2.z(), r3.z()), Vec.init(r0.w(), r1.w(), r2.w(), r3.w()), } }; } /// Returns the row `i` of the matrix. pub inline fn row(m: *const Matrix, i: usize) RowVec { return RowVec{ .v = RowVec.Vector{ m.v[0].v[i], m.v[1].v[i], m.v[2].v[i], m.v[3].v[i] } }; } /// Returns the column `i` of the matrix. pub inline fn col(m: *const Matrix, i: usize) RowVec { return RowVec{ .v = RowVec.Vector{ m.v[i].v[0], m.v[i].v[1], m.v[i].v[2], m.v[i].v[3] } }; } /// Transposes the matrix. pub inline fn transpose(m: *const Matrix) Matrix { return .{ .v = [_]Vec{ Vec.init(m.v[0].v[0], m.v[1].v[0], m.v[2].v[0], m.v[3].v[0]), Vec.init(m.v[0].v[1], m.v[1].v[1], m.v[2].v[1], m.v[3].v[1]), Vec.init(m.v[0].v[2], m.v[1].v[2], m.v[2].v[2], m.v[3].v[2]), Vec.init(m.v[0].v[3], m.v[1].v[3], m.v[2].v[3], m.v[3].v[3]), } }; } /// Constructs a 3D matrix which scales each dimension by the given vector. pub inline fn scale(s: math.Vec3) Matrix { return init( &RowVec.init(s.x(), 0, 0, 0), &RowVec.init(0, s.y(), 0, 0), &RowVec.init(0, 0, s.z(), 0), &RowVec.init(0, 0, 0, 1), ); } /// Constructs a 3D matrix which scales each dimension by the given scalar. pub inline fn scaleScalar(s: Vec.T) Matrix { return scale(math.Vec3.splat(s)); } /// Constructs a 3D matrix which translates coordinates by the given vector. pub inline fn translate(t: math.Vec3) Matrix { return init( &RowVec.init(1, 0, 0, t.x()), &RowVec.init(0, 1, 0, t.y()), &RowVec.init(0, 0, 1, t.z()), &RowVec.init(0, 0, 0, 1), ); } /// Constructs a 3D matrix which translates coordinates by the given scalar. pub inline fn translateScalar(t: Vec.T) Matrix { return translate(math.Vec3.splat(t)); } /// Returns the translation component of the matrix. pub inline fn translation(t: *const Matrix) math.Vec3 { return math.Vec3.init(t.v[3].x(), t.v[3].y(), t.v[3].z()); } /// Constructs a 3D matrix which rotates around the X axis by `angle_radians`. pub inline fn rotateX(angle_radians: f32) Matrix { const c = math.cos(angle_radians); const s = math.sin(angle_radians); return Matrix.init( &RowVec.init(1, 0, 0, 0), &RowVec.init(0, c, -s, 0), &RowVec.init(0, s, c, 0), &RowVec.init(0, 0, 0, 1), ); } /// Constructs a 3D matrix which rotates around the X axis by `angle_radians`. pub inline fn rotateY(angle_radians: f32) Matrix { const c = math.cos(angle_radians); const s = math.sin(angle_radians); return Matrix.init( &RowVec.init(c, 0, s, 0), &RowVec.init(0, 1, 0, 0), &RowVec.init(-s, 0, c, 0), &RowVec.init(0, 0, 0, 1), ); } /// Constructs a 3D matrix which rotates around the Z axis by `angle_radians`. pub inline fn rotateZ(angle_radians: f32) Matrix { const c = math.cos(angle_radians); const s = math.sin(angle_radians); return Matrix.init( &RowVec.init(c, -s, 0, 0), &RowVec.init(s, c, 0, 0), &RowVec.init(0, 0, 1, 0), &RowVec.init(0, 0, 0, 1), ); } /// Constructs a 2D projection matrix, aka. an orthographic projection matrix. /// /// First, a cuboid is defined with the parameters: /// /// * (right - left) defining the distance between the left and right faces of the cube /// * (top - bottom) defining the distance between the top and bottom faces of the cube /// * (near - far) defining the distance between the back (near) and front (far) faces of the cube /// /// We then need to construct a projection matrix which converts points in that /// cuboid's space into clip space: /// /// https://machengine.org/engine/math/traversing-coordinate-systems/#view---clip-space /// /// Normally, in sysgpu/webgpu the depth buffer of floating point values would /// have the range [0, 1] representing [near, far], i.e. a pixel very close to the /// viewer would have a depth value of 0.0, and a pixel very far from the viewer /// would have a depth value of 1.0. But this is an ineffective use of floating /// point precision, a better approach is a reversed depth buffer: /// /// * https://webgpu.github.io/webgpu-samples/samples/reversedZ /// * https://developer.nvidia.com/content/depth-precision-visualized /// /// Mach mandates the use of a reversed depth buffer, so the returned transformation /// matrix maps to near=1 and far=0. pub inline fn projection2D(v: struct { left: f32, right: f32, bottom: f32, top: f32, near: f32, far: f32, }) Matrix { var p = Matrix.ident; p = p.mul(&Matrix.translate(math.vec3( (v.right + v.left) / (v.left - v.right), // translate X so that the middle of (left, right) maps to x=0 in clip space (v.top + v.bottom) / (v.bottom - v.top), // translate Y so that the middle of (bottom, top) maps to y=0 in clip space v.far / (v.far - v.near), // translate Z so that far maps to z=0 ))); p = p.mul(&Matrix.scale(math.vec3( 2 / (v.right - v.left), // scale X so that [left, right] has a 2 unit range, e.g. [-1, +1] 2 / (v.top - v.bottom), // scale Y so that [bottom, top] has a 2 unit range, e.g. [-1, +1] 1 / (v.near - v.far), // scale Z so that [near, far] has a 1 unit range, e.g. [0, -1] ))); return p; } pub const mul = Shared.mul; pub const mulVec = Shared.mulVec; pub const eql = Shared.eql; pub const eqlApprox = Shared.eqlApprox; }; } pub fn MatShared(comptime RowVec: type, comptime ColVec: type, comptime Matrix: type) type { return struct { /// Matrix multiplication a*b pub inline fn mul(a: *const Matrix, b: *const Matrix) Matrix { @setEvalBranchQuota(10000); var result: Matrix = undefined; inline for (0..Matrix.rows) |row| { inline for (0..Matrix.cols) |col| { var sum: RowVec.T = 0.0; inline for (0..RowVec.n) |i| { // Note: we directly access rows/columns below as it is much faster **in // debug builds**, instead of using these helpers: // // sum += a.row(row).mul(&b.col(col)).v[i]; sum += a.v[i].v[row] * b.v[col].v[i]; } result.v[col].v[row] = sum; } } return result; } /// Matrix * Vector multiplication pub inline fn mulVec(matrix: *const Matrix, vector: *const ColVec) ColVec { var result = [_]ColVec.T{0} ** ColVec.n; inline for (0..Matrix.rows) |row| { inline for (0..ColVec.n) |i| { result[i] += matrix.v[row].v[i] * vector.v[row]; } } return ColVec{ .v = result }; } /// Check if two matrices are approximately equal. Returns true if the absolute difference between /// each element in matrix is less than or equal to the specified tolerance. pub inline fn eqlApprox(a: *const Matrix, b: *const Matrix, tolerance: ColVec.T) bool { inline for (0..Matrix.rows) |row| { if (!ColVec.eqlApprox(&a.v[row], &b.v[row], tolerance)) { return false; } } return true; } /// Check if two matrices are approximately equal. Returns true if the absolute difference between /// each element in matrix is less than or equal to the epsilon tolerance. pub inline fn eql(a: *const Matrix, b: *const Matrix) bool { inline for (0..Matrix.rows) |row| { if (!ColVec.eql(&a.v[row], &b.v[row])) { return false; } } return true; } }; } test "gpu_compatibility" { // https://www.w3.org/TR/WGSL/#alignment-and-size try testing.expect(usize, 16).eql(@sizeOf(math.Mat2x2)); try testing.expect(usize, 48).eql(@sizeOf(math.Mat3x3)); try testing.expect(usize, 64).eql(@sizeOf(math.Mat4x4)); try testing.expect(usize, 8).eql(@sizeOf(math.Mat2x2h)); try testing.expect(usize, 24).eql(@sizeOf(math.Mat3x3h)); try testing.expect(usize, 32).eql(@sizeOf(math.Mat4x4h)); try testing.expect(usize, 32).eql(@sizeOf(math.Mat2x2d)); // speculative try testing.expect(usize, 96).eql(@sizeOf(math.Mat3x3d)); // speculative try testing.expect(usize, 128).eql(@sizeOf(math.Mat4x4d)); // speculative } test "zero_struct_overhead" { // Proof that using e.g. [3]Vec3 is equal to [3]@Vector(3, f32) try testing.expect(usize, @alignOf([2]@Vector(2, f32))).eql(@alignOf(math.Mat2x2)); try testing.expect(usize, @alignOf([3]@Vector(3, f32))).eql(@alignOf(math.Mat3x3)); try testing.expect(usize, @alignOf([4]@Vector(4, f32))).eql(@alignOf(math.Mat4x4)); try testing.expect(usize, @sizeOf([2]@Vector(2, f32))).eql(@sizeOf(math.Mat2x2)); try testing.expect(usize, @sizeOf([3]@Vector(3, f32))).eql(@sizeOf(math.Mat3x3)); try testing.expect(usize, @sizeOf([4]@Vector(4, f32))).eql(@sizeOf(math.Mat4x4)); } test "n" { try testing.expect(usize, 3).eql(math.Mat3x3.cols); try testing.expect(usize, 3).eql(math.Mat3x3.rows); try testing.expect(type, math.Vec3).eql(math.Mat3x3.Vec); try testing.expect(usize, 3).eql(math.Mat3x3.Vec.n); } test "init" { try testing.expect(math.Mat3x3, math.mat3x3( &math.vec3(1, 0, 1337), &math.vec3(0, 1, 7331), &math.vec3(0, 0, 1), )).eql(math.Mat3x3{ .v = [_]math.Vec3{ math.Vec3.init(1, 0, 0), math.Vec3.init(0, 1, 0), math.Vec3.init(1337, 7331, 1), }, }); } test "Mat2x2_ident" { try testing.expect(math.Mat2x2, math.Mat2x2.ident).eql(math.Mat2x2{ .v = [_]math.Vec2{ math.Vec2.init(1, 0), math.Vec2.init(0, 1), }, }); } test "Mat3x3_ident" { try testing.expect(math.Mat3x3, math.Mat3x3.ident).eql(math.Mat3x3{ .v = [_]math.Vec3{ math.Vec3.init(1, 0, 0), math.Vec3.init(0, 1, 0), math.Vec3.init(0, 0, 1), }, }); } test "Mat4x4_ident" { try testing.expect(math.Mat4x4, math.Mat4x4.ident).eql(math.Mat4x4{ .v = [_]math.Vec4{ math.Vec4.init(1, 0, 0, 0), math.Vec4.init(0, 1, 0, 0), math.Vec4.init(0, 0, 1, 0), math.Vec4.init(0, 0, 0, 1), }, }); } test "Mat2x2_row" { const m = math.Mat2x2.init( &math.vec2(0, 1), &math.vec2(2, 3), ); try testing.expect(math.Vec2, math.vec2(0, 1)).eql(m.row(0)); try testing.expect(math.Vec2, math.vec2(2, 3)).eql(m.row(@TypeOf(m).rows - 1)); } test "Mat2x2_col" { const m = math.Mat2x2.init( &math.vec2(0, 1), &math.vec2(2, 3), ); try testing.expect(math.Vec2, math.vec2(0, 2)).eql(m.col(0)); try testing.expect(math.Vec2, math.vec2(1, 3)).eql(m.col(@TypeOf(m).cols - 1)); } test "Mat3x3_row" { const m = math.Mat3x3.init( &math.vec3(0, 1, 2), &math.vec3(3, 4, 5), &math.vec3(6, 7, 8), ); try testing.expect(math.Vec3, math.vec3(0, 1, 2)).eql(m.row(0)); try testing.expect(math.Vec3, math.vec3(3, 4, 5)).eql(m.row(1)); try testing.expect(math.Vec3, math.vec3(6, 7, 8)).eql(m.row(@TypeOf(m).rows - 1)); } test "Mat3x3_col" { const m = math.Mat3x3.init( &math.vec3(0, 1, 2), &math.vec3(3, 4, 5), &math.vec3(6, 7, 8), ); try testing.expect(math.Vec3, math.vec3(0, 3, 6)).eql(m.col(0)); try testing.expect(math.Vec3, math.vec3(1, 4, 7)).eql(m.col(1)); try testing.expect(math.Vec3, math.vec3(2, 5, 8)).eql(m.col(@TypeOf(m).cols - 1)); } test "Mat4x4_row" { const m = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); try testing.expect(math.Vec4, math.vec4(0, 1, 2, 3)).eql(m.row(0)); try testing.expect(math.Vec4, math.vec4(4, 5, 6, 7)).eql(m.row(1)); try testing.expect(math.Vec4, math.vec4(8, 9, 10, 11)).eql(m.row(2)); try testing.expect(math.Vec4, math.vec4(12, 13, 14, 15)).eql(m.row(@TypeOf(m).rows - 1)); } test "Mat4x4_col" { const m = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); try testing.expect(math.Vec4, math.vec4(0, 4, 8, 12)).eql(m.col(0)); try testing.expect(math.Vec4, math.vec4(1, 5, 9, 13)).eql(m.col(1)); try testing.expect(math.Vec4, math.vec4(2, 6, 10, 14)).eql(m.col(2)); try testing.expect(math.Vec4, math.vec4(3, 7, 11, 15)).eql(m.col(@TypeOf(m).cols - 1)); } test "Mat2x2_transpose" { const m = math.Mat2x2.init( &math.vec2(0, 1), &math.vec2(2, 3), ); try testing.expect(math.Mat2x2, math.Mat2x2.init( &math.vec2(0, 2), &math.vec2(1, 3), )).eql(m.transpose()); } test "Mat3x3_transpose" { const m = math.Mat3x3.init( &math.vec3(0, 1, 2), &math.vec3(3, 4, 5), &math.vec3(6, 7, 8), ); try testing.expect(math.Mat3x3, math.Mat3x3.init( &math.vec3(0, 3, 6), &math.vec3(1, 4, 7), &math.vec3(2, 5, 8), )).eql(m.transpose()); } test "Mat4x4_transpose" { const m = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); try testing.expect(math.Mat4x4, math.Mat4x4.init( &math.vec4(0, 4, 8, 12), &math.vec4(1, 5, 9, 13), &math.vec4(2, 6, 10, 14), &math.vec4(3, 7, 11, 15), )).eql(m.transpose()); } test "Mat2x2_scaleScalar" { const m = math.Mat2x2.scaleScalar(2); try testing.expect(math.Mat2x2, math.Mat2x2.init( &math.vec2(2, 0), &math.vec2(0, 1), )).eql(m); } test "Mat3x3_scale" { const m = math.Mat3x3.scale(math.vec2(2, 3)); try testing.expect(math.Mat3x3, math.Mat3x3.init( &math.vec3(2, 0, 0), &math.vec3(0, 3, 0), &math.vec3(0, 0, 1), )).eql(m); } test "Mat3x3_scaleScalar" { const m = math.Mat3x3.scaleScalar(2); try testing.expect(math.Mat3x3, math.Mat3x3.init( &math.vec3(2, 0, 0), &math.vec3(0, 2, 0), &math.vec3(0, 0, 1), )).eql(m); } test "Mat4x4_scale" { const m = math.Mat4x4.scale(math.vec3(2, 3, 4)); try testing.expect(math.Mat4x4, math.Mat4x4.init( &math.vec4(2, 0, 0, 0), &math.vec4(0, 3, 0, 0), &math.vec4(0, 0, 4, 0), &math.vec4(0, 0, 0, 1), )).eql(m); } test "Mat4x4_scaleScalar" { const m = math.Mat4x4.scaleScalar(2); try testing.expect(math.Mat4x4, math.Mat4x4.init( &math.vec4(2, 0, 0, 0), &math.vec4(0, 2, 0, 0), &math.vec4(0, 0, 2, 0), &math.vec4(0, 0, 0, 1), )).eql(m); } test "Mat3x3_translate" { const m = math.Mat3x3.translate(math.vec2(2, 3)); try testing.expect(math.Mat3x3, math.Mat3x3.init( &math.vec3(1, 0, 2), &math.vec3(0, 1, 3), &math.vec3(0, 0, 1), )).eql(m); } test "Mat4x4_translate" { const m = math.Mat4x4.translate(math.vec3(2, 3, 4)); try testing.expect(math.Mat4x4, math.Mat4x4.init( &math.vec4(1, 0, 0, 2), &math.vec4(0, 1, 0, 3), &math.vec4(0, 0, 1, 4), &math.vec4(0, 0, 0, 1), )).eql(m); } test "Mat3x3_translateScalar" { const m = math.Mat3x3.translateScalar(2); try testing.expect(math.Mat3x3, math.Mat3x3.init( &math.vec3(1, 0, 2), &math.vec3(0, 1, 2), &math.vec3(0, 0, 1), )).eql(m); } test "Mat2x2_translateScalar" { const m = math.Mat2x2.translateScalar(2); try testing.expect(math.Mat2x2, math.Mat2x2.init( &math.vec2(1, 2), &math.vec2(0, 1), )).eql(m); } test "Mat4x4_translateScalar" { const m = math.Mat4x4.translateScalar(2); try testing.expect(math.Mat4x4, math.Mat4x4.init( &math.vec4(1, 0, 0, 2), &math.vec4(0, 1, 0, 2), &math.vec4(0, 0, 1, 2), &math.vec4(0, 0, 0, 1), )).eql(m); } test "Mat3x3_translation" { const m = math.Mat3x3.translate(math.vec2(2, 3)); try testing.expect(math.Vec2, math.vec2(2, 3)).eql(m.translation()); } test "Mat4x4_translation" { const m = math.Mat4x4.translate(math.vec3(2, 3, 4)); try testing.expect(math.Vec3, math.vec3(2, 3, 4)).eql(m.translation()); } test "Mat2x2_mulVec_vec2_ident" { const v = math.Vec2.splat(1); const ident = math.Mat2x2.ident; const expected = v; const m = math.Mat2x2.mulVec(&ident, &v); try testing.expect(math.Vec2, expected).eql(m); } test "Mat2x2_mulVec_vec2" { const v = math.Vec2.splat(1); const mat = math.Mat2x2.init( &math.vec2(2, 0), &math.vec2(0, 2), ); const m = math.Mat2x2.mulVec(&mat, &v); const expected = math.vec2(2, 2); try testing.expect(math.Vec2, expected).eql(m); } test "Mat3x3_mulVec_vec3_ident" { const v = math.Vec3.splat(1); const ident = math.Mat3x3.ident; const expected = v; const m = math.Mat3x3.mulVec(&ident, &v); try testing.expect(math.Vec3, expected).eql(m); } test "Mat3x3_mulVec_vec3" { const v = math.Vec3.splat(1); const mat = math.Mat3x3.init( &math.vec3(2, 0, 0), &math.vec3(0, 2, 0), &math.vec3(0, 0, 3), ); const m = math.Mat3x3.mulVec(&mat, &v); const expected = math.vec3(2, 2, 3); try testing.expect(math.Vec3, expected).eql(m); } test "Mat4x4_mulVec_vec4" { const v = math.vec4(2, 5, 1, 8); const mat = math.Mat4x4.init( &math.vec4(1, 0, 2, 0), &math.vec4(0, 3, 0, 4), &math.vec4(0, 0, 5, 0), &math.vec4(6, 0, 0, 7), ); const m = math.Mat4x4.mulVec(&mat, &v); const expected = math.vec4(4, 47, 5, 68); try testing.expect(math.Vec4, expected).eql(m); } test "Mat2x2_mul" { const a = math.Mat2x2.init( &math.vec2(4, 2), &math.vec2(7, 9), ); const b = math.Mat2x2.init( &math.vec2(5, -7), &math.vec2(6, -3), ); const c = math.Mat2x2.mul(&a, &b); const expected = math.Mat2x2.init( &math.vec2(32, -34), &math.vec2(89, -76), ); try testing.expect(math.Mat2x2, expected).eql(c); } test "Mat3x3_mul" { const a = math.Mat3x3.init( &math.vec3(4, 2, -3), &math.vec3(7, 9, -8), &math.vec3(-1, 8, -8), ); const b = math.Mat3x3.init( &math.vec3(5, -7, -8), &math.vec3(6, -3, 2), &math.vec3(-3, -4, 4), ); const c = math.Mat3x3.mul(&a, &b); const expected = math.Mat3x3.init( &math.vec3(41, -22, -40), &math.vec3(113, -44, -70), &math.vec3(67, 15, -8), ); try testing.expect(math.Mat3x3, expected).eql(c); } test "Mat4x4_mul" { const a = math.Mat4x4.init( &math.vec4(10, -5, 6, -2), &math.vec4(0, -1, 0, 9), &math.vec4(-1, 6, -4, 8), &math.vec4(9, -8, -6, -10), ); const b = math.Mat4x4.init( &math.vec4(7, -7, -3, -8), &math.vec4(1, -1, -7, -2), &math.vec4(-10, 2, 2, -2), &math.vec4(10, -7, 7, 1), ); const c = math.Mat4x4.mul(&a, &b); const expected = math.Mat4x4.init( &math.vec4(-15, -39, 3, -84), &math.vec4(89, -62, 70, 11), &math.vec4(119, -63, 9, 12), &math.vec4(15, 3, -53, -54), ); try testing.expect(math.Mat4x4, expected).eql(c); } test "Mat4x4_eql_not_ident" { const m1 = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); const m2 = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4.5, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); try testing.expect(bool, math.Mat4x4.eql(&m1, &m2)).eql(false); } test "Mat4x4_eql_ident" { const m1 = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); const m2 = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); try testing.expect(bool, math.Mat4x4.eql(&m1, &m2)).eql(true); } test "Mat4x4_eqlApprox_not_ident" { const m1 = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); const m2 = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4.11, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); try testing.expect(bool, math.Mat4x4.eqlApprox(&m1, &m2, 0.1)).eql(false); } test "Mat4x4_eqlApprox_ident" { const m1 = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); const m2 = math.Mat4x4.init( &math.vec4(0, 1, 2, 3), &math.vec4(4.09, 5, 6, 7), &math.vec4(8, 9, 10, 11), &math.vec4(12, 13, 14, 15), ); try testing.expect(bool, math.Mat4x4.eqlApprox(&m1, &m2, 0.1)).eql(true); } test "projection2D_xy_centered" { const v = .{ .left = -400, .right = 400, .bottom = -200, .top = 200, .near = 0, .far = 100, }; const m = math.Mat4x4.projection2D(v); // Calculate some reference points const width = v.right - v.left; const height = v.top - v.bottom; const width_mid = v.left + (width / 2.0); const height_mid = v.bottom + (height / 2.0); try testing.expect(f32, 800).eql(width); try testing.expect(f32, 400).eql(height); try testing.expect(f32, 0).eql(width_mid); try testing.expect(f32, 0).eql(height_mid); // Probe some points on the X axis from beyond the left face, all the way to beyond the right face. try testing.expect(math.Vec4, math.vec4(-2, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.left - (width / 2), height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(-1, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.left, height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(-0.5, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.left + (width / 4.0), height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(0.5, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.right - (width / 4.0), height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(1, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.right, height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(2, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.right + (width / 2), height_mid, 0, 1))); // Probe some points on the Y axis from beyond the bottom face, all the way to beyond the top face. try testing.expect(math.Vec4, math.vec4(0, -2, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.bottom - (height / 2), 0, 1))); try testing.expect(math.Vec4, math.vec4(0, -1, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.bottom, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, -0.5, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.bottom + (height / 4.0), 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 0.5, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.top - (height / 4.0), 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 1, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.top, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 2, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.top + (height / 2), 0, 1))); } test "projection2D_xy_offcenter" { const v = .{ .left = 100, .right = 500, .bottom = 100, .top = 500, .near = 0, .far = 100, }; const m = math.Mat4x4.projection2D(v); // Calculate some reference points const width = v.right - v.left; const height = v.top - v.bottom; const width_mid = v.left + (width / 2.0); const height_mid = v.bottom + (height / 2.0); try testing.expect(f32, 400).eql(width); try testing.expect(f32, 400).eql(height); try testing.expect(f32, 300).eql(width_mid); try testing.expect(f32, 300).eql(height_mid); // Probe some points on the X axis from beyond the left face, all the way to beyond the right face. try testing.expect(math.Vec4, math.vec4(-2, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.left - (width / 2), height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(-1, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.left, height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(-0.5, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.left + (width / 4.0), height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(0.5, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.right - (width / 4.0), height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(1, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.right, height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(2, 0, 1, 1)).eql(m.mulVec(&math.vec4(v.right + (width / 2), height_mid, 0, 1))); // Probe some points on the Y axis from beyond the bottom face, all the way to beyond the top face. try testing.expect(math.Vec4, math.vec4(0, -2, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.bottom - (height / 2), 0, 1))); try testing.expect(math.Vec4, math.vec4(0, -1, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.bottom, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, -0.5, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.bottom + (height / 4.0), 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, height_mid, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 0.5, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.top - (height / 4.0), 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 1, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.top, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 2, 1, 1)).eql(m.mulVec(&math.vec4(width_mid, v.top + (height / 2), 0, 1))); } test "projection2D_z" { const m = math.Mat4x4.projection2D(.{ // Set x=0 and y=0 as centers, so we can specify 0 centers in our testing.expects below .left = -400, .right = 400, .bottom = -200, .top = 200, // Choose some near/far plane values that we can easily test against // We'll have [near, far] == [-100, 100] == [1, 0] .near = -100, .far = 100, }); // Probe some points on the Z axis from the near plane, all the way to the far plane. try testing.expect(math.Vec4, math.vec4(0, 0, 1, 1)).eql(m.mulVec(&math.vec4(0, 0, -100, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0.75, 1)).eql(m.mulVec(&math.vec4(0, 0, -50, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0.5, 1)).eql(m.mulVec(&math.vec4(0, 0, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0.25, 1)).eql(m.mulVec(&math.vec4(0, 0, 50, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0, 1)).eql(m.mulVec(&math.vec4(0, 0, 100, 1))); // Probe some points outside the near/far planes try testing.expect(math.Vec4, math.vec4(0, 0, 2, 1)).eql(m.mulVec(&math.vec4(0, 0, -100 - 200, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, -1, 1)).eql(m.mulVec(&math.vec4(0, 0, 100 + 200, 1))); } test "projection2D_z_positive" { const m = math.Mat4x4.projection2D(.{ // Set x=0 and y=0 as centers, so we can specify 0 centers in our testing.expects below .left = -400, .right = 400, .bottom = -200, .top = 200, // Choose some near/far plane values that we can easily test against // We'll have [near, far] == [0, 100] == [1, 0] .near = 0, .far = 100, }); // Probe some points on the Z axis from the near plane, all the way to the far plane. try testing.expect(math.Vec4, math.vec4(0, 0, 1, 1)).eql(m.mulVec(&math.vec4(0, 0, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0.75, 1)).eql(m.mulVec(&math.vec4(0, 0, 25, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0.5, 1)).eql(m.mulVec(&math.vec4(0, 0, 50, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0.25, 1)).eql(m.mulVec(&math.vec4(0, 0, 75, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0, 1)).eql(m.mulVec(&math.vec4(0, 0, 100, 1))); // Probe some points outside the near/far planes try testing.expect(math.Vec4, math.vec4(0, 0, 2, 1)).eql(m.mulVec(&math.vec4(0, 0, 0 - 100, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, -1, 1)).eql(m.mulVec(&math.vec4(0, 0, 100 + 100, 1))); } test "projection2D_model_to_clip_space" { const model = math.Mat4x4.ident; const view = math.Mat4x4.ident; const proj = math.Mat4x4.projection2D(.{ .left = -50, .right = 50, .bottom = -50, .top = 50, .near = 0, .far = 100, }); const mvp = model.mul(&view).mul(&proj); try testing.expect(math.Vec4, math.vec4(0, 0, 1.0, 1)).eql(mvp.mulVec(&math.vec4(0, 0, 0, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0.5, 1)).eql(mvp.mulVec(&math.vec4(0, 0, 50, 1))); try testing.expect(math.Vec4, math.vec4(0, -1, 1, 1)).eql(mvp.mul(&math.Mat4x4.rotateX(math.degreesToRadians(90))).mulVec(&math.vec4(0, 0, 50, 1))); try testing.expect(math.Vec4, math.vec4(1, 0, 1, 1)).eql(mvp.mul(&math.Mat4x4.rotateY(math.degreesToRadians(90))).mulVec(&math.vec4(0, 0, 50, 1))); try testing.expect(math.Vec4, math.vec4(0, 0, 0.5, 1)).eql(mvp.mul(&math.Mat4x4.rotateZ(math.degreesToRadians(90))).mulVec(&math.vec4(0, 0, 50, 1))); }