const std = @import("std"); const mach = @import("mach"); const gpu = @import("gpu"); const glfw = @import("glfw"); const App = @This(); const Vertex = struct { pos: @Vector(4, f32), uv: @Vector(2, f32), }; const vertices = [_]Vertex{ .{ .pos = .{ -1, -1, 0, 1 }, .uv = .{ 0, 0 } }, .{ .pos = .{ 1, -1, 0, 1 }, .uv = .{ 1, 0 } }, .{ .pos = .{ 1, 1, 0, 1 }, .uv = .{ 1, 1 } }, .{ .pos = .{ -1, 1, 0, 1 }, .uv = .{ 0, 1 } }, }; const indices = [_]u16{ 0, 1, 2, 2, 3, 0 }; const UniformBufferObject = struct { resolution: @Vector(2, f32), time: f32, }; var timer: std.time.Timer = undefined; pipeline: gpu.RenderPipeline, queue: gpu.Queue, vertex_buffer: gpu.Buffer, index_buffer: gpu.Buffer, uniform_buffer: gpu.Buffer, bind_group: gpu.BindGroup, fragment_shader_file: std.fs.File, fragment_shader_code: [:0]const u8, last_mtime: i128, pub fn init(app: *App, engine: *mach.Engine) !void { timer = try std.time.Timer.start(); engine.core.internal.window.setKeyCallback(struct { fn callback(window: glfw.Window, key: glfw.Key, scancode: i32, action: glfw.Action, mods: glfw.Mods) void { _ = scancode; _ = mods; if (action == .press) { switch (key) { .space => window.setShouldClose(true), else => {}, } } } }.callback); // On linux if we don't set a minimum size, you can squish the window to 0 pixels of width and height, // this makes some strange effects when that happens, so it's better to leave a minimum size to avoid that, // this doesn't prevent you from minimizing the window. try engine.core.internal.window.setSizeLimits(.{ .width = 20, .height = 20 }, .{ .width = null, .height = null }); var fragment_file: std.fs.File = undefined; var last_mtime: i128 = undefined; if (std.fs.cwd().openFile("shaderexp/frag.wgsl", .{ .mode = .read_only })) |file| { fragment_file = file; if (file.stat()) |stat| { last_mtime = stat.mtime; } else |err| { std.debug.print("Something went wrong when attempting to stat file: {}\n", .{err}); return; } } else |e| { std.debug.print("Something went wrong when attempting to open file: {}\n", .{e}); return; } var code = try fragment_file.readToEndAllocOptions(engine.allocator, std.math.maxInt(u16), null, 1, 0); const queue = engine.gpu_driver.device.getQueue(); const vertex_buffer = engine.gpu_driver.device.createBuffer(&.{ .usage = .{ .vertex = true }, .size = @sizeOf(Vertex) * vertices.len, .mapped_at_creation = true, }); var vertex_mapped = vertex_buffer.getMappedRange(Vertex, 0, vertices.len); std.mem.copy(Vertex, vertex_mapped, vertices[0..]); vertex_buffer.unmap(); const index_buffer = engine.gpu_driver.device.createBuffer(&.{ .usage = .{ .index = true }, .size = @sizeOf(u16) * indices.len, .mapped_at_creation = true, }); var index_mapped = index_buffer.getMappedRange(@TypeOf(indices[0]), 0, indices.len); std.mem.copy(u16, index_mapped, indices[0..]); index_buffer.unmap(); // We need a bgl to bind the UniformBufferObject, but it is also needed for creating // the RenderPipeline, so we pass it to recreatePipeline as a pointer var bgl: gpu.BindGroupLayout = undefined; const pipeline = recreatePipeline(engine, code, &bgl); const uniform_buffer = engine.gpu_driver.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .uniform = true }, .size = @sizeOf(UniformBufferObject), .mapped_at_creation = false, }); const bind_group = engine.gpu_driver.device.createBindGroup( &gpu.BindGroup.Descriptor{ .layout = bgl, .entries = &.{ gpu.BindGroup.Entry.buffer(0, uniform_buffer, 0, @sizeOf(UniformBufferObject)), }, }, ); app.pipeline = pipeline; app.queue = queue; app.vertex_buffer = vertex_buffer; app.index_buffer = index_buffer; app.uniform_buffer = uniform_buffer; app.bind_group = bind_group; app.fragment_shader_file = fragment_file; app.fragment_shader_code = code; app.last_mtime = last_mtime; bgl.release(); } pub fn deinit(app: *App, engine: *mach.Engine) void { app.fragment_shader_file.close(); engine.allocator.free(app.fragment_shader_code); app.vertex_buffer.release(); app.index_buffer.release(); app.uniform_buffer.release(); app.bind_group.release(); } pub fn update(app: *App, engine: *mach.Engine) !bool { if (app.fragment_shader_file.stat()) |stat| { if (app.last_mtime < stat.mtime) { std.log.info("The fragment shader has been changed", .{}); app.last_mtime = stat.mtime; app.fragment_shader_file.seekTo(0) catch unreachable; app.fragment_shader_code = app.fragment_shader_file.readToEndAllocOptions(engine.allocator, std.math.maxInt(u32), null, 1, 0) catch |err| { std.log.err("Err: {}", .{err}); return false; }; app.pipeline = recreatePipeline(engine, app.fragment_shader_code, null); } } else |err| { std.log.err("Something went wrong when attempting to stat file: {}\n", .{err}); } const back_buffer_view = engine.gpu_driver.swap_chain.?.getCurrentTextureView(); const color_attachment = gpu.RenderPassColorAttachment{ .view = back_buffer_view, .resolve_target = null, .clear_value = std.mem.zeroes(gpu.Color), .load_op = .clear, .store_op = .store, }; const encoder = engine.gpu_driver.device.createCommandEncoder(null); const render_pass_info = gpu.RenderPassEncoder.Descriptor{ .color_attachments = &.{color_attachment}, .depth_stencil_attachment = null, }; const time = @intToFloat(f32, timer.read()) / @as(f32, std.time.ns_per_s); const ubo = UniformBufferObject{ .resolution = .{ @intToFloat(f32, engine.gpu_driver.current_desc.width), @intToFloat(f32, engine.gpu_driver.current_desc.height) }, .time = time, }; encoder.writeBuffer(app.uniform_buffer, 0, UniformBufferObject, &.{ubo}); const pass = encoder.beginRenderPass(&render_pass_info); pass.setVertexBuffer(0, app.vertex_buffer, 0, @sizeOf(Vertex) * vertices.len); pass.setIndexBuffer(app.index_buffer, .uint16, 0, @sizeOf(u16) * indices.len); pass.setPipeline(app.pipeline); pass.setBindGroup(0, app.bind_group, &.{0}); pass.drawIndexed(indices.len, 1, 0, 0, 0); pass.end(); pass.release(); var command = encoder.finish(null); encoder.release(); app.queue.submit(&.{command}); command.release(); engine.gpu_driver.swap_chain.?.present(); back_buffer_view.release(); return true; } fn recreatePipeline(engine: *mach.Engine, fragment_shader_code: [:0]const u8, bgl: ?*gpu.BindGroupLayout) gpu.RenderPipeline { const vs_module = engine.gpu_driver.device.createShaderModule(&.{ .label = "my vertex shader", .code = .{ .wgsl = @embedFile("vert.wgsl") }, }); defer vs_module.release(); const vertex_attributes = [_]gpu.VertexAttribute{ .{ .format = .float32x4, .offset = @offsetOf(Vertex, "pos"), .shader_location = 0 }, .{ .format = .float32x2, .offset = @offsetOf(Vertex, "uv"), .shader_location = 1 }, }; const vertex_buffer_layout = gpu.VertexBufferLayout{ .array_stride = @sizeOf(Vertex), .step_mode = .vertex, .attribute_count = vertex_attributes.len, .attributes = &vertex_attributes, }; // Check wether the fragment shader code compiled successfully, if not // print the validation layer error and show a black screen engine.gpu_driver.device.pushErrorScope(.validation); var fs_module = engine.gpu_driver.device.createShaderModule(&gpu.ShaderModule.Descriptor{ .label = "my fragment shader", .code = .{ .wgsl = fragment_shader_code }, }); var error_occurred: bool = false; // popErrorScope() returns always true, (unless maybe it fails to capture the error scope?) _ = engine.gpu_driver.device.popErrorScope(&gpu.ErrorCallback.init(*bool, &error_occurred, struct { fn callback(ctx: *bool, typ: gpu.ErrorType, message: [*:0]const u8) void { if (typ != .noError) { std.debug.print("🔴🔴🔴🔴:\n{s}\n", .{message}); ctx.* = true; } } }.callback)); if (error_occurred) { fs_module = engine.gpu_driver.device.createShaderModule(&gpu.ShaderModule.Descriptor{ .label = "my fragment shader", .code = .{ .wgsl = @embedFile("black_screen_frag.wgsl") }, }); } defer fs_module.release(); const blend = gpu.BlendState{ .color = .{ .operation = .add, .src_factor = .one, .dst_factor = .zero, }, .alpha = .{ .operation = .add, .src_factor = .one, .dst_factor = .zero, }, }; const color_target = gpu.ColorTargetState{ .format = engine.gpu_driver.swap_chain_format, .blend = &blend, .write_mask = gpu.ColorWriteMask.all, }; const fragment = gpu.FragmentState{ .module = fs_module, .entry_point = "main", .targets = &.{color_target}, .constants = null, }; const bgle = gpu.BindGroupLayout.Entry.buffer(0, .{ .fragment = true }, .uniform, true, 0); // bgl is needed outside, for the creation of the uniform_buffer in main const bgl_tmp = engine.gpu_driver.device.createBindGroupLayout( &gpu.BindGroupLayout.Descriptor{ .entries = &.{bgle}, }, ); defer { // In frame we don't need to use bgl, so we can release it inside this function, else we pass bgl if (bgl == null) { bgl_tmp.release(); } else { bgl.?.* = bgl_tmp; } } const bind_group_layouts = [_]gpu.BindGroupLayout{bgl_tmp}; const pipeline_layout = engine.gpu_driver.device.createPipelineLayout(&.{ .bind_group_layouts = &bind_group_layouts, }); defer pipeline_layout.release(); const pipeline_descriptor = gpu.RenderPipeline.Descriptor{ .fragment = &fragment, .layout = pipeline_layout, .depth_stencil = null, .vertex = .{ .module = vs_module, .entry_point = "main", .buffers = &.{vertex_buffer_layout}, }, .multisample = .{ .count = 1, .mask = 0xFFFFFFFF, .alpha_to_coverage_enabled = false, }, .primitive = .{ .front_face = .ccw, .cull_mode = .none, .topology = .triangle_list, .strip_index_format = .none, }, }; // Create the render pipeline. Even if the shader compilation succeeded, this could fail if the // shader is missing a `main` entrypoint. engine.gpu_driver.device.pushErrorScope(.validation); const pipeline = engine.gpu_driver.device.createRenderPipeline(&pipeline_descriptor); // popErrorScope() returns always true, (unless maybe it fails to capture the error scope?) _ = engine.gpu_driver.device.popErrorScope(&gpu.ErrorCallback.init(*bool, &error_occurred, struct { fn callback(ctx: *bool, typ: gpu.ErrorType, message: [*:0]const u8) void { if (typ != .noError) { std.debug.print("🔴🔴🔴🔴:\n{s}\n", .{message}); ctx.* = true; } } }.callback)); if (error_occurred) { // Retry with black_screen_frag which we know will work. return recreatePipeline(engine, @embedFile("black_screen_frag.wgsl"), bgl); } return pipeline; }