//! # mach/math is opinionated //! //! Math is hard enough as-is, without you having to question ground truths while problem solving. //! As a result, mach/math takes a more opinionated approach than some other math libraries: we try //! to encourage you through API design to use what we believe to be the best choices. For example, //! other math libraries provide both LH and RH (left-handed and right-handed) variants for each //! operation, and they sit on equal footing for you to choose from; mach/math may also provide both //! variants as needed for conversions, but unlike other libraries will bless one choice with e.g. //! a shorter function name to nudge you in the right direction and towards _consistency_. //! //! ## Matrices //! //! * Column-major matrix storage //! * Column-vectors (i.e. right-associative multiplication, matrix * vector = vector) //! //! The benefit of using this "OpenGL-style" matrix is that it matches the conventions accepted by //! the scientific community, it's what you'll find in linear algebra textbooks. It also matches //! WebGPU, Vulkan, Unity3D, etc. It does NOT match DirectX-style which e.g. Unreal Engine uses. //! //! Note: many people will say "row major" or "column major" and implicitly mean three or more //! different concepts; to avoid confusion we'll go over this in more depth below. //! //! ## Coordinate system (+Y up, left-handed) //! //! * Normalized Device coordinates: +Y up; (-1, -1) is at the bottom-left corner. //! * Framebuffer coordinates: +Y down; (0, 0) is at the top-left corner. //! * Texture coordinates: +Y down; (0, 0) is at the top-left corner. //! //! This coordinate system is consistent with WebGPU, Metal, DirectX, and Unity (NDC only.) //! //! Note that since +Y is up (not +Z), developers can seamlessly transition from 2D applications //! to 3D applications by adding the Z component. This is in contrast to e.g. Z-up coordinate //! systems, where 2D and 3D must differ. //! //! ## Additional reading //! //! * [Coordinate system explainer](https://machengine.org/next/engine/math/coordinate-system/) //! * [Matrix storage explainer](https://machengine.org/next/engine/math/matrix-storage/) //! const std = @import("std"); const expect = std.testing.expect; const expectEqual = std.testing.expectEqual; const expectApproxEqAbs = std.testing.expectApproxEqAbs; pub const Vec2 = @Vector(2, f32); pub const Vec3 = @Vector(3, f32); pub const Vec4 = @Vector(4, f32); pub const Mat3x3 = @Vector(3 * 4, f32); pub const Mat4x4 = @Vector(4 * 4, f32); /// Vector operations pub const vec = struct { /// Returns the vector dimension size of the given type /// /// ``` /// vec.size(Vec3) == 3 /// ``` pub inline fn size(comptime T: type) comptime_int { switch (@typeInfo(T)) { .Vector => |info| return info.len, else => @compileError("Expected vector, found '" ++ @typeName(T) ++ "'"), } } /// Returns a vector with all components set to the `scalar` value: /// /// ``` /// var v = vec.splat(Vec3, 1337.0); /// // v.x == 1337, v.y == 1337, v.z == 1337 /// ``` pub inline fn splat(comptime V: type, scalar: f32) V { return @splat(size(V), scalar); } /// Computes the squared length of the vector. Faster than `len()` pub inline fn len2(v: anytype) f32 { switch (@TypeOf(v)) { Vec2 => return (v[0] * v[0]) + (v[1] * v[1]), Vec3 => return (v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2]), Vec4 => return (v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2]) + (v[3] * v[3]), else => @compileError("Expected vector, found '" ++ @typeName(@TypeOf(v)) ++ "'"), } } /// Computes the length of the vector. pub inline fn len(v: anytype) f32 { return std.math.sqrt(len2(v)); } /// Normalizes a vector, such that all components end up in the range [0.0, 1.0]. /// /// d0 is added to the divisor, which means that e.g. if you provide a near-zero value, then in /// situations where you would otherwise get NaN back you will instead get a near-zero vector. /// /// ``` /// var v = normalize(v, 0.00000001); /// ``` pub inline fn normalize(v: anytype, d0: f32) @TypeOf(v) { return v / (splat(@TypeOf(v), len(v) + d0)); } /// Returns the normalized direction vector from points a and b. /// /// d0 is added to the divisor, which means that e.g. if you provide a near-zero value, then in /// situations where you would otherwise get NaN back you will instead get a near-zero vector. /// /// ``` /// var v = dir(a_point, b_point); /// ``` pub inline fn dir(a: anytype, b: @TypeOf(a), d0: f32) @TypeOf(a) { return normalize(b - a, d0); } /// Calculates the squared distance between points a and b. Faster than `dist()`. pub inline fn dist2(a: anytype, b: @TypeOf(a)) f32 { return len2(b - a); } /// Calculates the distance between points a and b. pub inline fn dist(a: anytype, b: @TypeOf(a)) f32 { return std.math.sqrt(dist2(a, b)); } /// Performs linear interpolation between a and b by some amount. /// /// ``` /// lerp(a, b, 0.0) == a /// lerp(a, b, 1.0) == b /// ``` pub inline fn lerp(a: anytype, b: @TypeOf(a), amount: f32) @TypeOf(a) { return (a * splat(@TypeOf(a), 1.0 - amount)) + (b * splat(@TypeOf(a), amount)); } }; test "vec.size" { try expect(vec.size(Vec2) == 2); try expect(vec.size(Vec3) == 3); try expect(vec.size(Vec4) == 4); } test "vec.splat" { const v2 = vec.splat(Vec2, 1337.0); try expect(v2[0] == 1337 and v2[1] == 1337); const v3 = vec.splat(Vec3, 1337.0); try expect(v3[0] == 1337 and v3[1] == 1337 and v3[2] == 1337); const v4 = vec.splat(Vec4, 1337.0); try expect(v4[0] == 1337 and v4[1] == 1337 and v4[2] == 1337 and v4[3] == 1337); } test "vec.len2" { { const v = Vec2{ 1, 1 }; try expect(vec.len2(v) == 2); } { const v = Vec3{ 2, 3, -4 }; try expect(vec.len2(v) == 29); } { const v = Vec4{ 1.5, 2.25, 3.33, 4.44 }; try expectApproxEqAbs(vec.len2(v), 38.115, 0.0001); } { const v = Vec4{ 0, 0, 0, 0 }; try expect(vec.len2(v) == 0); } } test "vec.len" { { const v = Vec2{ 3, 4 }; try expect(vec.len(v) == 5); } { const v = Vec3{ 4, 4, 2 }; try expect(vec.len(v) == 6); } { const tolerance = 1e-8; const v = Vec4{ 1.5, 2.25, 3.33, 4.44 }; try expectApproxEqAbs(vec.len(v), 6.17373468817700328621, tolerance); } { const v = Vec4{ 0, 0, 0, 0 }; try expect(vec.len(v) == 0); } } test "vec.normalize" { const near_zero_value = 1e-8; { const v = Vec2{ 1, 1 }; const normalized = vec.normalize(v, 0); const norm_val = std.math.sqrt1_2; // 1 / sqrt(2) try expect(normalized[0] == norm_val and normalized[1] == norm_val); } { const v = Vec4{ 10, 0.5, -3, -0.2 }; const normalized = vec.normalize(v, near_zero_value); const result = Vec4{ 0.9565546486012808204, 0.04782773243006404102, -0.28696639458038424612, -0.01913109297202561641 }; try expectApproxEqAbs(normalized[0], result[0], 1e-7); try expectApproxEqAbs(normalized[1], result[1], 1e-7); try expectApproxEqAbs(normalized[2], result[2], 1e-7); try expectApproxEqAbs(normalized[3], result[3], 1e-7); } //NOTE: This test ensures that zero vector is also normalized to zero vector with help of divisor { const v = Vec2{ 0, 0 }; const normalized = vec.normalize(v, near_zero_value); try expect(normalized[0] == 0 and normalized[1] == 0); } //NOTE: This test should work but I am getting error: // 'test.vec.normalize' failed: expected -nan, found -nan // { // const v = Vec2{ 0, 0 }; // const normalized = vec.normalize(v, 0); // const NaN = std.math.nan(f32); // try std.testing.expectEqual(-NaN, normalized[0]); // try std.testing.expectEqual(-NaN, normalized[1]); // // try std.testing.expectApproxEqAbs(normalized[0], -NaN, 0.00000001); // // try std.testing.expectApproxEqAbs(normalized[1], -NaN, 0.00000001); // } //NOTE: This two test show how for small values if we add divisor we get different normalized vectors { const v = Vec2{ near_zero_value, near_zero_value }; const normalized = vec.normalize(v, near_zero_value); const norm_val = 0.4142135623730950488; // 0.00000001 / (sqrt((0.00000001×0.00000001) + (0.00000001×0.00000001)) + 0.00000001) try expect(normalized[0] == norm_val and normalized[1] == norm_val); } { const v = Vec2{ near_zero_value, near_zero_value }; const normalized = vec.normalize(v, 0); const norm_val = std.math.sqrt1_2; // 1 / sqrt(2) try expect(normalized[0] == norm_val and normalized[1] == norm_val); } } test "vec.dir" { const near_zero_value = 1e-8; { const a = Vec2{ 0, 0 }; const b = Vec2{ 0, 0 }; const d = vec.dir(a, b, near_zero_value); try expect(d[0] == 0 and d[1] == 0); } { const a = Vec2{ 1, 2 }; const b = Vec2{ 1, 2 }; const d = vec.dir(a, b, near_zero_value); try expect(d[0] == 0 and d[1] == 0); } { const a = Vec2{ 1, 2 }; const b = Vec2{ 3, 4 }; const d = vec.dir(a, b, 0); const result = std.math.sqrt1_2; // 1 / sqrt(2) try expect(d[0] == result and d[1] == result); } { const a = Vec2{ 1, 2 }; const b = Vec2{ -1, -2 }; const d = vec.dir(a, b, 0); const result = -0.44721359549995793928; // 1 / sqrt(5) try expectApproxEqAbs(d[0], result, near_zero_value); try expectApproxEqAbs(d[1], 2 * result, near_zero_value); } { const a = Vec3{ 1, -1, 0 }; const b = Vec3{ 0, 1, 1 }; const d = vec.dir(a, b, 0); const result_3 = 0.40824829046386301637; // 1 / sqrt(6) const result_1 = -result_3; // -1 / sqrt(6) const result_2 = 0.81649658092772603273; // sqrt(2/3) try expectApproxEqAbs(d[0], result_1, 1e-7); try expectApproxEqAbs(d[1], result_2, 1e-7); try expectApproxEqAbs(d[2], result_3, 1e-7); } } test "vec.dist2" { { const a = Vec4{ 0, 0, 0, 0 }; const b = Vec4{ 0, 0, 0, 0 }; try expect(vec.dist2(a, b) == 0); } { const a = Vec2{ 1, 1 }; try expect(vec.dist2(a, a) == 0); } { const a = Vec2{ 1, 2 }; const b = Vec2{ 3, 4 }; try expect(vec.dist2(a, b) == 8); } { const a = Vec3{ -1, -2, -3 }; const b = Vec3{ 3, 2, 1 }; try expect(vec.dist2(a, b) == 48); } { const a = Vec4{ 1.5, 2.25, 3.33, 4.44 }; const b = Vec4{ 1.44, -9.33, 7.25, -0.5 }; try expectApproxEqAbs(vec.dist2(a, b), 173.87, 1e-8); } } test "vec.dist" { { const a = Vec4{ 0, 0, 0, 0 }; const b = Vec4{ 0, 0, 0, 0 }; try expect(vec.dist(a, b) == 0); } { const a = Vec2{ 1, 1 }; try expect(vec.dist(a, a) == 0); } { const a = Vec2{ 1, 2 }; const b = Vec2{ 4, 6 }; try expectEqual(vec.dist(a, b), 5); } { const a = Vec3{ -1, -2, -3 }; const b = Vec3{ 3, 2, -1 }; try expect(vec.dist(a, b) == 6); } { const a = Vec4{ 1.5, 2.25, 3.33, 4.44 }; const b = Vec4{ 1.44, -9.33, 7.25, -0.5 }; try expectApproxEqAbs(vec.dist(a, b), 13.18597740025364975978, 1e-8); } } test "vec.lerp" { { const a = Vec4{ 1, 1, 1, 1 }; const b = Vec4{ 0, 0, 0, 0 }; const lerp_to_a = vec.lerp(a, b, 0.0); try expectEqual(lerp_to_a[0], a[0]); try expectEqual(lerp_to_a[1], a[1]); try expectEqual(lerp_to_a[2], a[2]); try expectEqual(lerp_to_a[3], a[3]); const lerp_to_b = vec.lerp(a, b, 1.0); try expectEqual(lerp_to_b[0], b[0]); try expectEqual(lerp_to_b[1], b[1]); try expectEqual(lerp_to_b[2], b[2]); try expectEqual(lerp_to_b[3], b[3]); const lerp_to_mid = vec.lerp(a, b, 0.5); try expectEqual(lerp_to_mid[0], 0.5); try expectEqual(lerp_to_mid[1], 0.5); try expectEqual(lerp_to_mid[2], 0.5); try expectEqual(lerp_to_mid[3], 0.5); } } /// Matrix operations pub const mat = struct { /// Constructs an identity matrix of type T. pub inline fn identity(comptime T: type) T { return if (T == Mat3x3) .{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, } else if (T == Mat4x4) .{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, } else @compileError("Expected matrix, found '" ++ @typeName(T) ++ "'"); } pub inline fn set_2d_matrix(data: []const f32) Mat3x3 { std.debug.assert(data.len == 9); return .{ data[0], data[1], data[2], 0, data[3], data[4], data[5], 0, data[6], data[7], data[8], 0, }; } pub inline fn set_3d_matrix(data: []const f32) Mat4x4 { std.debug.assert(data.len == 16); return .{ data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], data[10], data[11], data[12], data[13], data[14], data[15], }; } /// Constructs an orthographic projection matrix; an orthogonal transformation matrix which /// transforms from the given left, right, bottom, and top dimensions into -1 +1 in x and y, /// and 0 to +1 in z. /// /// The near/far parameters denotes the depth (z coordinate) of the near/far clipping plane. /// /// Returns an orthographic projection matrix. pub inline fn ortho( /// The sides of the near clipping plane viewport left: f32, right: f32, bottom: f32, top: f32, /// The depth (z coordinate) of the near/far clipping plane. near: f32, far: f32, ) Mat4x4 { const xx = 2 / (right - left); const yy = 2 / (top - bottom); const zz = 1 / (near - far); const tx = (right + left) / (left - right); const ty = (top + bottom) / (bottom - top); const tz = near / (near - far); return .{ xx, 0, 0, 0, 0, yy, 0, 0, 0, 0, zz, 0, tx, ty, tz, 1, }; } /// Constructs a 2D matrix which translates coordinates by v. pub inline fn translate2d(v: Vec2) Mat3x3 { return .{ 1, 0, 0, 0, 0, 1, 0, 0, v[0], v[1], 1, 0, }; } /// Constructs a 3D matrix which translates coordinates by v. pub inline fn translate3d(v: Vec3) Mat4x4 { return .{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, v[0], v[1], v[2], 1, }; } /// Returns the translation component of the 2D matrix. pub inline fn translation2d(v: Mat3x3) Vec2 { return .{ v[8], v[9] }; } /// Returns the translation component of the 3D matrix. pub inline fn translation3d(v: Mat4x4) Vec3 { return .{ v[12], v[13], v[14] }; } /// Constructs a 3D matrix which scales each dimension by the given vector. pub inline fn scale3d(v: Vec3) Mat4x4 { return .{ v[0], 0, 0, 0, 0, v[1], 0, 0, 0, 0, v[2], 0, 0, 0, 0, 1, }; } /// Constructs a 3D matrix which scales each dimension by the given vector. pub inline fn scale2d(v: Vec2) Mat3x3 { return .{ v[0], 0, 0, 0, 0, v[1], 0, 0, 0, 0, 1, 0, }; } // Multiplies matrices a * b pub inline fn mul(a: anytype, b: @TypeOf(a)) @TypeOf(a) { return if (@TypeOf(a) == Mat3x3) { const a00 = a[0]; const a01 = a[1]; const a02 = a[2]; const a10 = a[4 + 0]; const a11 = a[4 + 1]; const a12 = a[4 + 2]; const a20 = a[8 + 0]; const a21 = a[8 + 1]; const a22 = a[8 + 2]; const b00 = b[0]; const b01 = b[1]; const b02 = b[2]; const b10 = b[4 + 0]; const b11 = b[4 + 1]; const b12 = b[4 + 2]; const b20 = b[8 + 0]; const b21 = b[8 + 1]; const b22 = b[8 + 2]; return .{ a00 * b00 + a10 * b01 + a20 * b02, a01 * b00 + a11 * b01 + a21 * b02, a02 * b00 + a12 * b01 + a22 * b02, a00 * b10 + a10 * b11 + a20 * b12, a01 * b10 + a11 * b11 + a21 * b12, a02 * b10 + a12 * b11 + a22 * b12, a00 * b20 + a10 * b21 + a20 * b22, a01 * b20 + a11 * b21 + a21 * b22, a02 * b20 + a12 * b21 + a22 * b22, }; } else if (@TypeOf(a) == Mat4x4) { const a00 = a[0]; const a01 = a[1]; const a02 = a[2]; const a03 = a[3]; const a10 = a[4 + 0]; const a11 = a[4 + 1]; const a12 = a[4 + 2]; const a13 = a[4 + 3]; const a20 = a[8 + 0]; const a21 = a[8 + 1]; const a22 = a[8 + 2]; const a23 = a[8 + 3]; const a30 = a[12 + 0]; const a31 = a[12 + 1]; const a32 = a[12 + 2]; const a33 = a[12 + 3]; const b00 = b[0]; const b01 = b[1]; const b02 = b[2]; const b03 = b[3]; const b10 = b[4 + 0]; const b11 = b[4 + 1]; const b12 = b[4 + 2]; const b13 = b[4 + 3]; const b20 = b[8 + 0]; const b21 = b[8 + 1]; const b22 = b[8 + 2]; const b23 = b[8 + 3]; const b30 = b[12 + 0]; const b31 = b[12 + 1]; const b32 = b[12 + 2]; const b33 = b[12 + 3]; return .{ a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03, a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03, a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03, a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03, a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13, a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13, a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13, a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13, a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23, a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23, a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23, a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23, a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33, a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33, a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33, a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33, }; } else @compileError("Expected matrix, found '" ++ @typeName(@TypeOf(a)) ++ "'"); } /// Check if two matrices are exactly equal. For approximate comparison use `equalsApproximately()` pub inline fn equals(a: anytype, b: @TypeOf(a)) bool { return if (@TypeOf(a) == Mat3x3) { return a[0] == b[0] and a[1] == b[1] and a[2] == b[2] and a[3] == b[3] and a[4] == b[4] and a[5] == b[5] and a[6] == b[6] and a[7] == b[7] and a[8] == b[8] and a[9] == b[9] and a[10] == b[10] and a[11] == b[11]; } else if (@TypeOf(a) == Mat4x4) { return a[0] == b[0] and a[1] == b[1] and a[2] == b[2] and a[3] == b[3] and a[4] == b[4] and a[5] == b[5] and a[6] == b[6] and a[7] == b[7] and a[8] == b[8] and a[9] == b[9] and a[10] == b[10] and a[11] == b[11] and a[12] == b[12] and a[13] == b[13] and a[14] == b[14] and a[15] == b[15]; } else @compileError("Expected matrix, found '" ++ @typeName(@TypeOf(a)) ++ "'"); } const approxEqAbs = std.math.approxEqAbs; /// Check if two matrices are approximate equal. Returns true if the absolute difference between /// each element in matrix them is less or equal than the specified tolerance. pub inline fn equalsApproximately(a: anytype, b: @TypeOf(a), tolerance: f32) bool { return if (@TypeOf(a) == Mat3x3) { return approxEqAbs(f32, a[0], b[0], tolerance) and approxEqAbs(f32, a[1], b[1], tolerance) and approxEqAbs(f32, a[2], b[2], tolerance) and approxEqAbs(f32, a[3], b[3], tolerance) and approxEqAbs(f32, a[4], b[4], tolerance) and approxEqAbs(f32, a[5], b[5], tolerance) and approxEqAbs(f32, a[6], b[6], tolerance) and approxEqAbs(f32, a[7], b[7], tolerance) and approxEqAbs(f32, a[8], b[8], tolerance) and approxEqAbs(f32, a[9], b[9], tolerance) and approxEqAbs(f32, a[10], b[10], tolerance) and approxEqAbs(f32, a[11], b[11], tolerance); } else if (@TypeOf(a) == Mat4x4) { return approxEqAbs(f32, a[0], b[0], tolerance) and approxEqAbs(f32, a[1], b[1], tolerance) and approxEqAbs(f32, a[2], b[2], tolerance) and approxEqAbs(f32, a[3], b[3], tolerance) and approxEqAbs(f32, a[4], b[4], tolerance) and approxEqAbs(f32, a[5], b[5], tolerance) and approxEqAbs(f32, a[6], b[6], tolerance) and approxEqAbs(f32, a[7], b[7], tolerance) and approxEqAbs(f32, a[8], b[8], tolerance) and approxEqAbs(f32, a[9], b[9], tolerance) and approxEqAbs(f32, a[10], b[10], tolerance) and approxEqAbs(f32, a[11], b[11], tolerance) and approxEqAbs(f32, a[12], b[12], tolerance) and approxEqAbs(f32, a[13], b[13], tolerance) and approxEqAbs(f32, a[14], b[14], tolerance) and approxEqAbs(f32, a[15], b[15], tolerance); } else @compileError("Expected matrix, found '" ++ @typeName(@TypeOf(a)) ++ "'"); } /// Constructs a 3D matrix which rotates around the X axis by `angle_radians`. pub inline fn rotateX(angle_radians: f32) Mat4x4 { const c = std.math.cos(angle_radians); const s = std.math.sin(angle_radians); return .{ 1, 0, 0, 0, 0, c, s, 0, 0, -s, c, 0, 0, 0, 0, 1, }; } /// Constructs a 3D matrix which rotates around the X axis by `angle_radians`. pub inline fn rotateY(angle_radians: f32) Mat4x4 { const c = std.math.cos(angle_radians); const s = std.math.sin(angle_radians); return .{ c, 0, -s, 0, 0, 1, 0, 0, s, 0, c, 0, 0, 0, 0, 1, }; } /// Constructs a 3D matrix which rotates around the Z axis by `angle_radians`. pub inline fn rotateZ(angle_radians: f32) Mat4x4 { const c = std.math.cos(angle_radians); const s = std.math.sin(angle_radians); return .{ c, s, 0, 0, -s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }; } }; test "mat.identity" { { const identity_4x4: Mat4x4 = mat.identity(Mat4x4); var row: u8 = 0; while (row < 4) { var column: u8 = 0; while (column < 4) { var value: f32 = if (row == column) 1 else 0; try expect(identity_4x4[row * 4 + column] == value); column += 1; } row += 1; } } { const identity_3x3: Mat3x3 = mat.identity(Mat3x3); var row: u8 = 0; while (row < 3) { var column: u8 = 0; while (column < 4) { var value: f32 = if (row == column) 1 else 0; try expect(identity_3x3[row * 4 + column] == value); column += 1; } row += 1; } } } test "mat.orto" { const orto_mat = mat.ortho(-2, 2, -2, 3, 10, 110); // Computed Values try expectEqual(orto_mat[0], 0.5); try expectEqual(orto_mat[4 + 1], 0.4); try expectEqual(orto_mat[4 * 2 + 2], -0.01); try expectEqual(orto_mat[4 * 3 + 0], 0); try expectEqual(orto_mat[4 * 3 + 1], -0.2); try expectEqual(orto_mat[4 * 3 + 2], -0.1); // Constant values, which should not change but we still check for completness const zero_value_indexes = [_]u8{ 1, 2, 3, 4, 4 + 2, 4 + 3, 4 * 2, 4 * 2 + 1, 4 * 2 + 3, }; for (zero_value_indexes) |index| { try expectEqual(orto_mat[index], 0); } try expectEqual(orto_mat[4 * 3 + 3], 1); } test "mat.translate2d" { const v = Vec2{ 1.0, -2.5 }; const translation_mat = mat.translate2d(v); // Computed Values try expectEqual(translation_mat[4 * 2], v[0]); try expectEqual(translation_mat[4 * 2 + 1], v[1]); // Constant values, which should not change but we still check for completness const zero_value_indexes = [_]u8{ 1, 2, 3, 4, 4 + 2, 4 + 3, 4 * 2 + 3, }; for (zero_value_indexes) |index| { try expectEqual(translation_mat[index], 0); } try expectEqual(translation_mat[0], 1); try expectEqual(translation_mat[4 + 1], 1); try expectEqual(translation_mat[4 * 2 + 2], 1); } test "mat.translate3d" { const v = Vec3{ 1.0, -2.5, 0.001 }; const translation_mat = mat.translate3d(v); // Computed Values try expectEqual(translation_mat[4 * 3], v[0]); try expectEqual(translation_mat[4 * 3 + 1], v[1]); try expectEqual(translation_mat[4 * 3 + 2], v[2]); // Constant values, which should not change but we still check for completness const zero_value_indexes = [_]u8{ 1, 2, 3, 4, 4 + 2, 4 + 3, 4 * 2, 4 * 2 + 1, 4 * 2 + 3, }; for (zero_value_indexes) |index| { try expectEqual(translation_mat[index], 0); } try expectEqual(translation_mat[4 * 3 + 3], 1); } test "mat.translation" { { const v = Vec2{ 1.0, -2.5 }; const translation_mat = mat.translate2d(v); const result = mat.translation2d(translation_mat); try expectEqual(result[0], v[0]); try expectEqual(result[1], v[1]); } { const v = Vec3{ 1.0, -2.5, 0.001 }; const translation_mat = mat.translate3d(v); const result = mat.translation3d(translation_mat); try expectEqual(result[0], v[0]); try expectEqual(result[1], v[1]); try expectEqual(result[2], v[2]); } } test "mat.scale2d" { const v = Vec2{ 1.0, -2.5 }; const scale_mat = mat.scale2d(v); // Computed Values try expectEqual(scale_mat[0], v[0]); try expectEqual(scale_mat[4 * 1 + 1], v[1]); // Constant values, which should not change but we still check for completness const zero_value_indexes = [_]u8{ 1, 2, 3, 4, 4 + 2, 4 + 3, 4 * 2, 4 * 2 + 1, 4 * 2 + 3, }; for (zero_value_indexes) |index| { try expectEqual(scale_mat[index], 0); } try expectEqual(scale_mat[4 * 2 + 2], 1); } test "mat.scale3d" { const v = Vec3{ 1.0, -2.5, 0.001 }; const scale_mat = mat.scale3d(v); // Computed Values try expectEqual(scale_mat[0], v[0]); try expectEqual(scale_mat[4 * 1 + 1], v[1]); try expectEqual(scale_mat[4 * 2 + 2], v[2]); // Constant values, which should not change but we still check for completness const zero_value_indexes = [_]u8{ 1, 2, 3, 4, 4 + 2, 4 + 3, 4 * 2, 4 * 2 + 1, 4 * 2 + 3, 4 * 3, 4 * 3 + 1, 4 * 3 + 2, }; for (zero_value_indexes) |index| { try expectEqual(scale_mat[index], 0); } try expectEqual(scale_mat[4 * 3 + 3], 1); } const degreesToRadians = std.math.degreesToRadians; // NOTE: Maybe reconsider based on feedback to join all test for rotation into one test as only // location of values change. And create some kind of struct that will hold this indexes and // coresponding values test "mat.rotateX" { const zero_value_indexes = [_]u8{ 1, 2, 3, 4, 4 + 3, 4 * 2, 4 * 2 + 3, 4 * 3, 4 * 3 + 1, 4 * 3 + 2, }; const one_value_indexes = [_]u8{ 0, 4 * 3 + 3, }; const tolerance = 1e-7; { const r = 90; const R_x = mat.rotateX(degreesToRadians(f32, r)); try expectApproxEqAbs(R_x[4 * 1 + 1], 0, tolerance); try expectApproxEqAbs(R_x[4 * 2 + 2], 0, tolerance); try expectApproxEqAbs(R_x[4 * 1 + 2], 1, tolerance); try expectApproxEqAbs(R_x[4 * 2 + 1], -1, tolerance); for (zero_value_indexes) |index| { try expectEqual(R_x[index], 0); } for (one_value_indexes) |index| { try expectEqual(R_x[index], 1); } } { const r = 0; const R_x = mat.rotateX(degreesToRadians(f32, r)); try expectApproxEqAbs(R_x[4 * 1 + 1], 1, tolerance); try expectApproxEqAbs(R_x[4 * 2 + 2], 1, tolerance); try expectApproxEqAbs(R_x[4 * 1 + 2], 0, tolerance); try expectApproxEqAbs(R_x[4 * 2 + 1], 0, tolerance); for (zero_value_indexes) |index| { try expectEqual(R_x[index], 0); } for (one_value_indexes) |index| { try expectEqual(R_x[index], 1); } } { const r = 45; const result: f32 = std.math.sqrt(2.0) / 2.0; // sqrt(2) / 2 const R_x = mat.rotateX(degreesToRadians(f32, r)); try expectApproxEqAbs(R_x[4 * 1 + 1], result, tolerance); try expectApproxEqAbs(R_x[4 * 2 + 2], result, tolerance); try expectApproxEqAbs(R_x[4 * 1 + 2], result, tolerance); try expectApproxEqAbs(R_x[4 * 2 + 1], -result, tolerance); for (zero_value_indexes) |index| { try expectEqual(R_x[index], 0); } for (one_value_indexes) |index| { try expectEqual(R_x[index], 1); } } } test "mat.rotateY" { const zero_value_indexes = [_]u8{ 1, 3, 4, 4 + 2, 4 + 3, 4 * 2 + 1, 4 * 2 + 3, 4 * 3, 4 * 3 + 1, 4 * 3 + 2, }; const one_value_indexes = [_]u8{ 4 + 1, 4 * 3 + 3, }; const tolerance = 1e-7; { const r = 90; const R_y = mat.rotateY(degreesToRadians(f32, r)); try expectApproxEqAbs(R_y[0], 0, tolerance); try expectApproxEqAbs(R_y[4 * 2 + 2], 0, tolerance); try expectApproxEqAbs(R_y[2], -1, tolerance); try expectApproxEqAbs(R_y[4 * 2], 1, tolerance); for (zero_value_indexes) |index| { try expectEqual(R_y[index], 0); } for (one_value_indexes) |index| { try expectEqual(R_y[index], 1); } } { const r = 0; const R_y = mat.rotateY(degreesToRadians(f32, r)); try expectApproxEqAbs(R_y[0], 1, tolerance); try expectApproxEqAbs(R_y[4 * 2 + 2], 1, tolerance); try expectApproxEqAbs(R_y[2], 0, tolerance); try expectApproxEqAbs(R_y[4 * 2], 0, tolerance); for (zero_value_indexes) |index| { try expectEqual(R_y[index], 0); } for (one_value_indexes) |index| { try expectEqual(R_y[index], 1); } } { const r = 45; const result: f32 = std.math.sqrt(2.0) / 2.0; // sqrt(2) / 2 const R_y = mat.rotateY(degreesToRadians(f32, r)); try expectApproxEqAbs(R_y[0], result, tolerance); try expectApproxEqAbs(R_y[4 * 2 + 2], result, tolerance); try expectApproxEqAbs(R_y[2], -result, tolerance); try expectApproxEqAbs(R_y[4 * 2], result, tolerance); for (zero_value_indexes) |index| { try expectEqual(R_y[index], 0); } for (one_value_indexes) |index| { try expectEqual(R_y[index], 1); } } } test "mat.rotateZ" { const zero_value_indexes = [_]u8{ 2, 3, 4 + 2, 4 + 3, 4 * 2, 4 * 2 + 1, 4 * 2 + 3, 4 * 3, 4 * 3 + 1, 4 * 3 + 2, }; const one_value_indexes = [_]u8{ 4 * 2 + 2, 4 * 3 + 3, }; const tolerance = 1e-7; { const r = 90; const R_z = mat.rotateZ(degreesToRadians(f32, r)); try expectApproxEqAbs(R_z[0], 0, tolerance); try expectApproxEqAbs(R_z[4 * 1 + 1], 0, tolerance); try expectApproxEqAbs(R_z[1], 1, tolerance); try expectApproxEqAbs(R_z[4], -1, tolerance); for (zero_value_indexes) |index| { try expectEqual(R_z[index], 0); } for (one_value_indexes) |index| { try expectEqual(R_z[index], 1); } } { const r = 0; const R_z = mat.rotateZ(degreesToRadians(f32, r)); try expectApproxEqAbs(R_z[0], 1, tolerance); try expectApproxEqAbs(R_z[4 * 1 + 1], 1, tolerance); try expectApproxEqAbs(R_z[1], 0, tolerance); try expectApproxEqAbs(R_z[4], 0, tolerance); for (zero_value_indexes) |index| { try expectEqual(R_z[index], 0); } for (one_value_indexes) |index| { try expectEqual(R_z[index], 1); } } { const r = 45; const result: f32 = std.math.sqrt(2.0) / 2.0; // sqrt(2) / 2 const R_z = mat.rotateZ(degreesToRadians(f32, r)); try expectApproxEqAbs(R_z[0], result, tolerance); try expectApproxEqAbs(R_z[4 * 1 + 1], result, tolerance); try expectApproxEqAbs(R_z[1], result, tolerance); try expectApproxEqAbs(R_z[4], -result, tolerance); for (zero_value_indexes) |index| { try expectEqual(R_z[index], 0); } for (one_value_indexes) |index| { try expectEqual(R_z[index], 1); } } } test "mat.mul" { { const tolerance = 1e-6; const t = Vec3{ 1, 2, -3 }; const T = mat.translate3d(t); const s = Vec3{ 3, 1, -5 }; const S = mat.scale3d(s); const r = Vec3{ 30, -40, 235 }; const R_x = mat.rotateX(degreesToRadians(f32, r[0])); const R_y = mat.rotateY(degreesToRadians(f32, r[1])); const R_z = mat.rotateZ(degreesToRadians(f32, r[2])); const R_yz = mat.mul(R_y, R_z); // NOTE: This values are calculated by hand with help of matrix calculator: https://matrix.reshish.com/multCalculation.php const expected_R_yz = mat.set_3d_matrix(&[_]f32{ -0.43938504177070496278, -0.8191520442889918, -0.36868782649461236545, 0, 0.62750687159713312638, -0.573576436351046, 0.52654078451836329713, 0, -0.6427876096865394, 0, 0.766044443118978, 0, 0, 0, 0, 1, }); try expect(mat.equalsApproximately(R_yz, expected_R_yz, tolerance)); const R_xyz = mat.mul(R_x, R_yz); const expected_R_xyz = mat.set_3d_matrix(&[_]f32{ -0.439385041770705, -0.52506256666891627986, -0.72886904595489960019, 0, 0.6275068715971331, -0.76000215715133560834, 0.16920947734596765363, 0, -0.6427876096865394, -0.383022221559489, 0.66341394816893832989, 0, 0, 0, 0, 1, }); try expect(mat.equalsApproximately(R_xyz, expected_R_xyz, tolerance)); const SR = mat.mul(S, R_xyz); const expected_SR = mat.set_3d_matrix(&[_]f32{ -1.318155125312115, -0.5250625666689163, 3.6443452297744985, 0, 1.8825206147913993, -0.7600021571513356, -0.8460473867298382, 0, -1.9283628290596182, -0.383022221559489, -3.3170697408446915, 0, 0, 0, 0, 1, }); try expect(mat.equalsApproximately(SR, expected_SR, tolerance)); const TSR = mat.mul(T, SR); const expected_TSR = mat.set_3d_matrix(&[_]f32{ -1.318155125312115, -0.5250625666689163, 3.6443452297744985, 0, 1.8825206147913993, -0.7600021571513356, -0.8460473867298382, 0, -1.9283628290596182, -0.383022221559489, -3.3170697408446914, 0, 1, 2, -3, 1, }); try expect(mat.equalsApproximately(TSR, expected_TSR, tolerance)); } }