const std = @import("std"); const mach = @import("mach"); const gpu = mach.gpu; const gfx = mach.gfx; const math = mach.math; const vec2 = math.vec2; const vec3 = math.vec3; const Vec2 = math.Vec2; const Vec3 = math.Vec3; const Mat3x3 = math.Mat3x3; const Mat4x4 = math.Mat4x4; const Glyphs = @import("Glyphs.zig"); const App = @This(); pub const mach_module = .app; pub const mach_systems = .{ .start, .init, .deinit, .tick, .end_frame }; timer: mach.time.Timer, player: mach.EntityID, direction: Vec2 = vec2(0, 0), spawning: bool = false, spawn_timer: mach.time.Timer, fps_timer: mach.time.Timer, frame_count: usize, sprites: usize, rand: std.Random.DefaultPrng, time: f32, pipeline: mach.EntityID, frame_encoder: *gpu.CommandEncoder = undefined, frame_render_pass: *gpu.RenderPassEncoder = undefined, fn deinit(sprite_pipeline: *gfx.SpritePipeline.Mod, glyphs: *Glyphs.Mod) !void { sprite_pipeline.schedule(.deinit); glyphs.schedule(.deinit); } fn start(core: *mach.Core, sprite_pipeline: *gfx.SpritePipeline.Mod, glyphs: *Glyphs.Mod, app: *App) !void { core.schedule(.init); sprite_pipeline.schedule(.init); glyphs.schedule(.init); // Prepare which glyphs we will render glyphs.schedule(.prepare); // Run our init code after glyphs module is initialized. app.schedule(.init); } fn init( entities: *mach.Entities.Mod, sprite: *gfx.Sprite.Mod, sprite_pipeline: *gfx.SpritePipeline.Mod, glyphs: *Glyphs.Mod, app: *App, core: *mach.Core, app_mod: mach.Functions(App), ) !void { core.on_tick = app_mod.id.tick; core.on_exit = app_mod.id.deinit; // Create a sprite rendering pipeline const texture = glyphs.state().texture; const pipeline = try entities.new(); texture.reference(); try sprite_pipeline.set(pipeline, .texture, texture); sprite_pipeline.schedule(.update); // We can create entities, and set components on them. Note that components live in a module // namespace, e.g. the `Sprite` module could have a 3D `.location` component with a different // type than the `.physics2d` module's `.location` component if you desire. const r = glyphs.state().regions.get('?').?; const player = try entities.new(); try sprite.set(player, .transform, Mat4x4.translate(vec3(-0.02, 0, 0))); try sprite.set(player, .pipeline, pipeline); try sprite.set(player, .size, vec2(@floatFromInt(r.width), @floatFromInt(r.height))); try sprite.set(player, .uv_transform, Mat3x3.translate(vec2(@floatFromInt(r.x), @floatFromInt(r.y)))); sprite.schedule(.update); app.init(.{ .timer = try mach.time.Timer.start(), .spawn_timer = try mach.time.Timer.start(), .player = player, .fps_timer = try mach.time.Timer.start(), .frame_count = 0, .sprites = 0, .rand = std.Random.DefaultPrng.init(1337), .time = 0, .pipeline = pipeline, }); } fn tick( entities: *mach.Entities.Mod, core: *mach.Core, sprite: *gfx.Sprite.Mod, sprite_pipeline: *gfx.SpritePipeline.Mod, glyphs: *Glyphs.Mod, app: *App, ) !void { var direction = app.direction; var spawning = app.spawning; while (core.nextEvent()) |event| { switch (event) { .key_press => |ev| { switch (ev.key) { .left => direction.v[0] -= 1, .right => direction.v[0] += 1, .up => direction.v[1] += 1, .down => direction.v[1] -= 1, .space => spawning = true, else => {}, } }, .key_release => |ev| { switch (ev.key) { .left => direction.v[0] += 1, .right => direction.v[0] -= 1, .up => direction.v[1] -= 1, .down => direction.v[1] += 1, .space => spawning = false, else => {}, } }, .close => core.exit(), else => {}, } } app.direction = direction; app.spawning = spawning; var player_transform = sprite.get(app.player, .transform).?; var player_pos = player_transform.translation(); if (!spawning and app.spawn_timer.read() > 1.0 / 60.0) { // Spawn new entities _ = app.spawn_timer.lap(); for (0..50) |_| { var new_pos = player_pos; new_pos.v[0] += app.rand.random().floatNorm(f32) * 25; new_pos.v[1] += app.rand.random().floatNorm(f32) * 25; const rand_index = app.rand.random().intRangeAtMost(usize, 0, glyphs.state().regions.count() - 1); const r = glyphs.state().regions.entries.get(rand_index).value; const new_entity = try entities.new(); try sprite.set(new_entity, .transform, Mat4x4.translate(new_pos).mul(&Mat4x4.scaleScalar(0.3))); try sprite.set(new_entity, .size, vec2(@floatFromInt(r.width), @floatFromInt(r.height))); try sprite.set(new_entity, .uv_transform, Mat3x3.translate(vec2(@floatFromInt(r.x), @floatFromInt(r.y)))); try sprite.set(new_entity, .pipeline, app.pipeline); app.sprites += 1; } } // Multiply by delta_time to ensure that movement is the same speed regardless of the frame rate. const delta_time = app.timer.lap(); // Animate entities var q = try entities.query(.{ .ids = mach.Entities.Mod.read(.id), .transforms = gfx.Sprite.Mod.write(.transform), }); while (q.next()) |v| { for (v.ids, v.transforms) |id, *entity_transform| { var location = entity_transform.translation(); // TODO: formatting // TODO(Core) if (location.x() < -@as(f32, @floatFromInt(core.size().width)) / 1.5 or location.x() > @as(f32, @floatFromInt(core.size().width)) / 1.5 or location.y() < -@as(f32, @floatFromInt(core.size().height)) / 1.5 or location.y() > @as(f32, @floatFromInt(core.size().height)) / 1.5) { try entities.remove(id); app.sprites -= 1; continue; } var transform = Mat4x4.ident; transform = transform.mul(&Mat4x4.scale(Vec3.splat(1.0 + (0.2 * delta_time)))); transform = transform.mul(&Mat4x4.translate(location)); transform = transform.mul(&Mat4x4.rotateZ(2 * math.pi * app.time)); transform = transform.mul(&Mat4x4.scale(Vec3.splat(@max(math.cos(app.time / 2.0), 0.2)))); entity_transform.* = transform; } } // Calculate the player position, by moving in the direction the player wants to go // by the speed amount. const speed = 200.0; player_pos.v[0] += direction.x() * speed * delta_time; player_pos.v[1] += direction.y() * speed * delta_time; player_transform = Mat4x4.translate(player_pos).mul( &Mat4x4.scale(Vec3.splat(1.0)), ); try sprite.set(app.player, .transform, player_transform); sprite.schedule(.update); // Perform pre-render work sprite_pipeline.schedule(.pre_render); // Create a command encoder for this frame const label = @tagName(mach_module) ++ ".tick"; app.frame_encoder = core.device.createCommandEncoder(&.{ .label = label }); // Grab the back buffer of the swapchain // TODO(Core) const back_buffer_view = core.swap_chain.getCurrentTextureView().?; defer back_buffer_view.release(); // Begin render pass const sky_blue = gpu.Color{ .r = 0.776, .g = 0.988, .b = 1, .a = 1 }; const color_attachments = [_]gpu.RenderPassColorAttachment{.{ .view = back_buffer_view, .clear_value = sky_blue, .load_op = .clear, .store_op = .store, }}; app.frame_render_pass = app.frame_encoder.beginRenderPass(&gpu.RenderPassDescriptor.init(.{ .label = label, .color_attachments = &color_attachments, })); // Render our sprite batch sprite_pipeline.state().render_pass = app.frame_render_pass; sprite_pipeline.schedule(.render); // Finish the frame once rendering is done. app.schedule(.end_frame); app.time += delta_time; } fn endFrame(app: *App, core: *mach.Core) !void { // Finish render pass app.frame_render_pass.end(); const label = @tagName(mach_module) ++ ".endFrame"; var command = app.frame_encoder.finish(&.{ .label = label }); core.queue.submit(&[_]*gpu.CommandBuffer{command}); command.release(); app.frame_encoder.release(); app.frame_render_pass.release(); // Every second, update the window title with the FPS if (app.fps_timer.read() >= 1.0) { try core.printTitle( core.main_window, "glyphs [ FPS: {d} ] [ Sprites: {d} ]", .{ app.frame_count, app.sprites }, ); core.schedule(.update); app.fps_timer.reset(); app.frame_count = 0; } app.frame_count += 1; }