//! # mach/math is opinionated //! //! Math is hard enough as-is, without you having to question ground truths while problem solving. //! As a result, mach/math takes a more opinionated approach than some other math libraries: we try //! to encourage you through API design to use what we believe to be the best choices. For example, //! other math libraries provide both LH and RH (left-handed and right-handed) variants for each //! operation, and they sit on equal footing for you to choose from; mach/math may also provide both //! variants as needed for conversions, but unlike other libraries will bless one choice with e.g. //! a shorter function name to nudge you in the right direction and towards _consistency_. //! //! ## Matrices //! //! * Column-major matrix storage //! * Column-vectors (i.e. right-associative multiplication, matrix * vector = vector) //! //! The benefit of using this "OpenGL-style" matrix is that it matches the conventions accepted by //! the scientific community, it's what you'll find in linear algebra textbooks. It also matches //! WebGPU, Vulkan, Unity3D, etc. It does NOT match DirectX-style which e.g. Unreal Engine uses. //! //! Note: many people will say "row major" or "column major" and implicitly mean three or more //! different concepts; to avoid confusion we'll go over this in more depth below. //! //! ## Coordinate system (+Y up, left-handed) //! //! * Normalized Device coordinates: +Y up; (-1, -1) is at the bottom-left corner. //! * Framebuffer coordinates: +Y down; (0, 0) is at the top-left corner. //! * Texture coordinates: +Y down; (0, 0) is at the top-left corner. //! //! This coordinate system is consistent with WebGPU, Metal, DirectX, and Unity (NDC only.) //! //! Note that since +Y is up (not +Z), developers can seamlessly transition from 2D applications //! to 3D applications by adding the Z component. This is in contrast to e.g. Z-up coordinate //! systems, where 2D and 3D must differ. //! //! ## Additional reading //! //! * [Coordinate system explainer](https://machengine.org/next/engine/math/coordinate-system/) //! * [Matrix storage explainer](https://machengine.org/next/engine/math/matrix-storage/) //! const std = @import("std"); pub const Vec2 = @Vector(2, f32); pub const Vec3 = @Vector(3, f32); pub const Vec4 = @Vector(4, f32); pub const Mat3x3 = @Vector(3 * 4, f32); pub const Mat4x4 = @Vector(4 * 4, f32); /// Vector operations pub const vec = struct { /// Returns the vector dimension size of the given type /// /// ``` /// vec.size(Vec3) == 3 /// ``` pub inline fn size(comptime T: type) comptime_int { switch (@typeInfo(T)) { .Vector => |info| return info.len, else => @compileError("Expected vector, found '" ++ @typeName(T) ++ "'"), } } /// Returns a vector with all components set to the `scalar` value: /// /// ``` /// var v = vec.splat(Vec3, 1337.0); /// // v.x == 1337, v.y == 1337, v.z == 1337 /// ``` pub inline fn splat(comptime V: type, scalar: f32) V { return @splat(size(V), scalar); } /// Computes the squared length of the vector. Faster than `len()` pub inline fn len2(v: anytype) f32 { switch (@TypeOf(v)) { Vec2 => return (v[0] * v[0]) + (v[1] * v[1]), Vec3 => return (v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2]), Vec4 => return (v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2]) + (v[3] * v[3]), else => @compileError("Expected vector, found '" ++ @typeName(@TypeOf(v)) ++ "'"), } } /// Computes the length of the vector. pub inline fn len(v: anytype) f32 { return std.math.sqrt(len2(v)); } /// Normalizes a vector, such that all components end up in the range [0.0, 1.0]. /// /// d0 is added to the divisor, which means that e.g. if you provide a near-zero value, then in /// situations where you would otherwise get NaN back you will instead get a near-zero vector. /// /// ``` /// var v = normalize(v, 0.00000001); /// ``` pub inline fn normalize(v: anytype, d0: f32) @TypeOf(v) { return v / (splat(@TypeOf(v), len(v) + d0)); } /// Returns the normalized direction vector from points a and b. /// /// d0 is added to the divisor, which means that e.g. if you provide a near-zero value, then in /// situations where you would otherwise get NaN back you will instead get a near-zero vector. /// /// ``` /// var v = dir(a_point, b_point); /// ``` pub inline fn dir(a: anytype, b: @TypeOf(a), d0: f32) @TypeOf(a) { return normalize(b - a, d0); } /// Calculates the squared distance between points a and b. Faster than `dist()`. pub inline fn dist2(a: anytype, b: @TypeOf(a)) f32 { return len2(b - a); } /// Calculates the distance between points a and b. pub inline fn dist(a: anytype, b: @TypeOf(a)) f32 { return std.math.sqrt(dist2(a, b)); } /// Performs linear interpolation between a and b by some amount. /// /// ``` /// lerp(a, b, 0.0) == a /// lerp(a, b, 1.0) == b /// ``` pub inline fn lerp(a: anytype, b: @TypeOf(a), amount: f32) @TypeOf(a) { return (a * splat(@TypeOf(a), 1.0 - amount)) + (b * splat(@TypeOf(a), amount)); } }; /// Matrix operations pub const mat = struct { /// Constructs an identity matrix of type T. pub inline fn identity(comptime T: type) T { return if (T == Mat3x3) .{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, } else if (T == Mat4x4) .{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, } else @compileError("Expected matrix, found '" ++ @typeName(T) ++ "'"); } /// Constructs an orthographic projection matrix; an orthogonal transformation matrix which /// transforms from the given left, right, bottom, and top dimensions into -1 +1 in x and y, /// and 0 to +1 in z. /// /// The near/far parameters denotes the depth (z coordinate) of the near/far clipping plane. /// /// Returns an orthographic projection matrix. pub inline fn ortho( /// The sides of the near clipping plane viewport left: f32, right: f32, bottom: f32, top: f32, /// The depth (z coordinate) of the near/far clipping plane. near: f32, far: f32, ) Mat4x4 { const xx = 2 / (right - left); const yy = 2 / (top - bottom); const zz = 1 / (near - far); const tx = (right + left) / (left - right); const ty = (top + bottom) / (bottom - top); const tz = near / (near - far); return .{ xx, 0, 0, 0, 0, yy, 0, 0, 0, 0, zz, 0, tx, ty, tz, 1, }; } /// Constructs a 2D matrix which translates coordinates by v. pub inline fn translate2d(v: Vec2) Mat3x3 { return .{ 1, 0, 0, 0, 0, 1, 0, 0, v[0], v[1], 1, 0, }; } /// Constructs a 3D matrix which translates coordinates by v. pub inline fn translate3d(v: Vec3) Mat4x4 { return .{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, v[0], v[1], v[2], 1, }; } /// Returns the translation component of the 2D matrix. pub inline fn translation2d(v: Mat3x3) Vec2 { return .{ v[8], v[9] }; } /// Returns the translation component of the 3D matrix. pub inline fn translation3d(v: Mat4x4) Vec3 { return .{ v[12], v[13], v[14] }; } /// Constructs a 3D matrix which scales each dimension by the given vector. pub inline fn scale3d(v: Vec3) Mat4x4 { return .{ v[0], 0, 0, 0, 0, v[1], 0, 0, 0, 0, v[2], 0, 0, 0, 0, 1, }; } /// Constructs a 3D matrix which scales each dimension by the given vector. pub inline fn scale2d(v: Vec2) Mat3x3 { return .{ v[0], 0, 0, 0, 0, v[1], 0, 0, 0, 0, 1, 0, }; } // Multiplies matrices a * b pub inline fn mul(a: anytype, b: @TypeOf(a)) @TypeOf(a) { return if (@TypeOf(a) == Mat3x3) { const a00 = a[0]; const a01 = a[1]; const a02 = a[2]; const a10 = a[4 + 0]; const a11 = a[4 + 1]; const a12 = a[4 + 2]; const a20 = a[8 + 0]; const a21 = a[8 + 1]; const a22 = a[8 + 2]; const b00 = b[0]; const b01 = b[1]; const b02 = b[2]; const b10 = b[4 + 0]; const b11 = b[4 + 1]; const b12 = b[4 + 2]; const b20 = b[8 + 0]; const b21 = b[8 + 1]; const b22 = b[8 + 2]; return .{ a00 * b00 + a10 * b01 + a20 * b02, a01 * b00 + a11 * b01 + a21 * b02, a02 * b00 + a12 * b01 + a22 * b02, a00 * b10 + a10 * b11 + a20 * b12, a01 * b10 + a11 * b11 + a21 * b12, a02 * b10 + a12 * b11 + a22 * b12, a00 * b20 + a10 * b21 + a20 * b22, a01 * b20 + a11 * b21 + a21 * b22, a02 * b20 + a12 * b21 + a22 * b22, }; } else if (@TypeOf(a) == Mat4x4) { const a00 = a[0]; const a01 = a[1]; const a02 = a[2]; const a03 = a[3]; const a10 = a[4 + 0]; const a11 = a[4 + 1]; const a12 = a[4 + 2]; const a13 = a[4 + 3]; const a20 = a[8 + 0]; const a21 = a[8 + 1]; const a22 = a[8 + 2]; const a23 = a[8 + 3]; const a30 = a[12 + 0]; const a31 = a[12 + 1]; const a32 = a[12 + 2]; const a33 = a[12 + 3]; const b00 = b[0]; const b01 = b[1]; const b02 = b[2]; const b03 = b[3]; const b10 = b[4 + 0]; const b11 = b[4 + 1]; const b12 = b[4 + 2]; const b13 = b[4 + 3]; const b20 = b[8 + 0]; const b21 = b[8 + 1]; const b22 = b[8 + 2]; const b23 = b[8 + 3]; const b30 = b[12 + 0]; const b31 = b[12 + 1]; const b32 = b[12 + 2]; const b33 = b[12 + 3]; return .{ a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03, a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03, a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03, a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03, a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13, a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13, a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13, a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13, a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23, a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23, a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23, a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23, a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33, a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33, a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33, a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33, }; } else @compileError("Expected matrix, found '" ++ @typeName(@TypeOf(a)) ++ "'"); } /// Constructs a 3D matrix which rotates around the Z axis by `angle_radians`. pub inline fn rotateZ(angle_radians: f32) Mat4x4 { const c = std.math.cos(angle_radians); const s = std.math.sin(angle_radians); return .{ c, s, 0, 0, -s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }; } };