// TODO(important): review all code in this file in-depth const std = @import("std"); const zigimg = @import("zigimg"); const assets = @import("assets"); const mach = @import("mach"); const gpu = mach.gpu; const gfx = mach.gfx; const math = mach.math; const vec2 = math.vec2; const vec3 = math.vec3; const Vec2 = math.Vec2; const Vec3 = math.Vec3; const Mat3x3 = math.Mat3x3; const Mat4x4 = math.Mat4x4; var gpa = std.heap.GeneralPurposeAllocator(.{}){}; timer: mach.Timer, player: mach.EntityID, direction: Vec2 = vec2(0, 0), spawning: bool = false, spawn_timer: mach.Timer, fps_timer: mach.Timer, frame_count: usize, sprites: usize, rand: std.rand.DefaultPrng, time: f32, allocator: std.mem.Allocator, pipeline: mach.EntityID, frame_encoder: *gpu.CommandEncoder = undefined, frame_render_pass: *gpu.RenderPassEncoder = undefined, // Define the globally unique name of our module. You can use any name here, but keep in mind no // two modules in the program can have the same name. pub const name = .app; pub const Mod = mach.Mod(@This()); pub const systems = .{ .init = .{ .handler = init }, .deinit = .{ .handler = deinit }, .after_init = .{ .handler = afterInit }, .update = .{ .handler = update }, .end_frame = .{ .handler = endFrame }, }; fn deinit( sprite_pipeline: *gfx.SpritePipeline.Mod, ) !void { sprite_pipeline.schedule(.deinit); } fn init( sprite_pipeline: *gfx.SpritePipeline.Mod, game: *Mod, ) !void { sprite_pipeline.schedule(.init); game.schedule(.after_init); } fn afterInit( entities: *mach.Entities.Mod, core: *mach.Core.Mod, sprite: *gfx.Sprite.Mod, sprite_pipeline: *gfx.SpritePipeline.Mod, game: *Mod, ) !void { // We can create entities, and set components on them. Note that components live in a module // namespace, e.g. the `.mach_gfx_sprite` module could have a 3D `.location` component with a different // type than the `.physics2d` module's `.location` component if you desire. // Create a sprite rendering pipeline const allocator = gpa.allocator(); const pipeline = try entities.new(); try sprite_pipeline.set(pipeline, .texture, try loadTexture(core, allocator)); sprite_pipeline.schedule(.update); // Create our player sprite const player = try entities.new(); try sprite.set(player, .transform, Mat4x4.translate(vec3(-0.02, 0, 0))); try sprite.set(player, .size, vec2(32, 32)); try sprite.set(player, .uv_transform, Mat3x3.translate(vec2(0, 0))); try sprite.set(player, .pipeline, pipeline); sprite.schedule(.update); game.init(.{ .timer = try mach.Timer.start(), .spawn_timer = try mach.Timer.start(), .player = player, .fps_timer = try mach.Timer.start(), .frame_count = 0, .sprites = 0, .rand = std.rand.DefaultPrng.init(1337), .time = 0, .allocator = allocator, .pipeline = pipeline, }); } fn update( entities: *mach.Entities.Mod, core: *mach.Core.Mod, sprite: *gfx.Sprite.Mod, sprite_pipeline: *gfx.SpritePipeline.Mod, game: *Mod, ) !void { // TODO(important): event polling should occur in mach.Core module and get fired as ECS events. // TODO(Core) var iter = core.state().pollEvents(); var direction = game.state().direction; var spawning = game.state().spawning; while (iter.next()) |event| { switch (event) { .key_press => |ev| { switch (ev.key) { .left => direction.v[0] -= 1, .right => direction.v[0] += 1, .up => direction.v[1] += 1, .down => direction.v[1] -= 1, .space => spawning = true, else => {}, } }, .key_release => |ev| { switch (ev.key) { .left => direction.v[0] += 1, .right => direction.v[0] -= 1, .up => direction.v[1] -= 1, .down => direction.v[1] += 1, .space => spawning = false, else => {}, } }, .close => core.schedule(.exit), else => {}, } } game.state().direction = direction; game.state().spawning = spawning; var player_transform = sprite.get(game.state().player, .transform).?; var player_pos = player_transform.translation(); if (spawning and game.state().spawn_timer.read() > 1.0 / 60.0) { // Spawn new entities _ = game.state().spawn_timer.lap(); for (0..100) |_| { var new_pos = player_pos; new_pos.v[0] += game.state().rand.random().floatNorm(f32) * 25; new_pos.v[1] += game.state().rand.random().floatNorm(f32) * 25; const new_entity = try entities.new(); try sprite.set(new_entity, .transform, Mat4x4.translate(new_pos).mul(&Mat4x4.scale(Vec3.splat(0.3)))); try sprite.set(new_entity, .size, vec2(32, 32)); try sprite.set(new_entity, .uv_transform, Mat3x3.translate(vec2(0, 0))); try sprite.set(new_entity, .pipeline, game.state().pipeline); game.state().sprites += 1; } } // Multiply by delta_time to ensure that movement is the same speed regardless of the frame rate. const delta_time = game.state().timer.lap(); // Rotate entities var q = try entities.query(.{ .transforms = gfx.Sprite.Mod.write(.transform), }); while (q.next()) |v| { for (v.transforms) |*entity_transform| { const location = entity_transform.*.translation(); // var transform = entity_transform.mul(&Mat4x4.translate(-location)); // transform = mat.rotateZ(0.3 * delta_time).mul(&transform); // transform = transform.mul(&Mat4x4.translate(location)); var transform = Mat4x4.ident; transform = transform.mul(&Mat4x4.translate(location)); transform = transform.mul(&Mat4x4.rotateZ(2 * math.pi * game.state().time)); transform = transform.mul(&Mat4x4.scaleScalar(@min(math.cos(game.state().time / 2.0), 0.5))); entity_transform.* = transform; } } // Calculate the player position, by moving in the direction the player wants to go // by the speed amount. const speed = 200.0; player_pos.v[0] += direction.x() * speed * delta_time; player_pos.v[1] += direction.y() * speed * delta_time; try sprite.set(game.state().player, .transform, Mat4x4.translate(player_pos)); sprite.schedule(.update); // Perform pre-render work sprite_pipeline.schedule(.pre_render); // Create a command encoder for this frame const label = @tagName(name) ++ ".tick"; game.state().frame_encoder = core.state().device.createCommandEncoder(&.{ .label = label }); // Grab the back buffer of the swapchain // TODO(Core) const back_buffer_view = core.state().swap_chain.getCurrentTextureView().?; defer back_buffer_view.release(); // Begin render pass const sky_blue = gpu.Color{ .r = 0.776, .g = 0.988, .b = 1, .a = 1 }; const color_attachments = [_]gpu.RenderPassColorAttachment{.{ .view = back_buffer_view, .clear_value = sky_blue, .load_op = .clear, .store_op = .store, }}; game.state().frame_render_pass = game.state().frame_encoder.beginRenderPass(&gpu.RenderPassDescriptor.init(.{ .label = label, .color_attachments = &color_attachments, })); // Render our sprite batch sprite_pipeline.state().render_pass = game.state().frame_render_pass; sprite_pipeline.schedule(.render); // Finish the frame once rendering is done. game.schedule(.end_frame); game.state().time += delta_time; } fn endFrame(game: *Mod, core: *mach.Core.Mod) !void { // Finish render pass game.state().frame_render_pass.end(); const label = @tagName(name) ++ ".endFrame"; var command = game.state().frame_encoder.finish(&.{ .label = label }); core.state().queue.submit(&[_]*gpu.CommandBuffer{command}); command.release(); game.state().frame_encoder.release(); game.state().frame_render_pass.release(); // Present the frame core.schedule(.present_frame); // Every second, update the window title with the FPS if (game.state().fps_timer.read() >= 1.0) { try core.state().printTitle( core.state().main_window, "sprite [ FPS: {d} ] [ Sprites: {d} ]", .{ game.state().frame_count, game.state().sprites }, ); game.state().fps_timer.reset(); game.state().frame_count = 0; } game.state().frame_count += 1; } // TODO: move this helper into gfx module fn loadTexture(core: *mach.Core.Mod, allocator: std.mem.Allocator) !*gpu.Texture { const device = core.state().device; const queue = core.state().queue; // Load the image from memory var img = try zigimg.Image.fromMemory(allocator, assets.sprites_sheet_png); defer img.deinit(); const img_size = gpu.Extent3D{ .width = @as(u32, @intCast(img.width)), .height = @as(u32, @intCast(img.height)) }; // Create a GPU texture const label = @tagName(name) ++ ".loadTexture"; const texture = device.createTexture(&.{ .label = label, .size = img_size, .format = .rgba8_unorm, .usage = .{ .texture_binding = true, .copy_dst = true, }, }); const data_layout = gpu.Texture.DataLayout{ .bytes_per_row = @as(u32, @intCast(img.width * 4)), .rows_per_image = @as(u32, @intCast(img.height)), }; switch (img.pixels) { .rgba32 => |pixels| queue.writeTexture(&.{ .texture = texture }, &data_layout, &img_size, pixels), .rgb24 => |pixels| { const data = try rgb24ToRgba32(allocator, pixels); defer data.deinit(allocator); queue.writeTexture(&.{ .texture = texture }, &data_layout, &img_size, data.rgba32); }, else => @panic("unsupported image color format"), } return texture; } fn rgb24ToRgba32(allocator: std.mem.Allocator, in: []zigimg.color.Rgb24) !zigimg.color.PixelStorage { const out = try zigimg.color.PixelStorage.init(allocator, .rgba32, in.len); var i: usize = 0; while (i < in.len) : (i += 1) { out.rgba32[i] = zigimg.color.Rgba32{ .r = in[i].r, .g = in[i].g, .b = in[i].b, .a = 255 }; } return out; }