const std = @import("std"); const math = @import("main.zig"); const testing = @import("../testing.zig"); const Vec2 = math.Vec2; const vec2 = math.vec2; pub const Rectangle = struct { pos: Vec2, size: Vec2, pub fn collidesRect(a: Rectangle, b: Rectangle) bool { return a.pos.x() + a.size.x() >= b.pos.x() and a.pos.x() <= b.pos.x() + b.size.x() and a.pos.y() + a.size.y() >= b.pos.y() and a.pos.y() <= b.pos.y() + b.size.y(); } test collidesRect { const a: Rectangle = .{ .pos = vec2(2, 3), .size = vec2(5, 5) }; var b: Rectangle = .{ .pos = vec2(6, 3), .size = vec2(3, 2) }; try testing.expect(bool, a.collidesRect(b)).eql(true); b.pos = vec2(7.1, 3); try testing.expect(bool, a.collidesRect(b)).eql(false); } // TODO: add test for this function /// Get collision rectangle for two rectangles collision pub fn collisionRect(a: Rectangle, b: Rectangle) ?Rectangle { const left = if (a.pos.x() > b.pos.x()) a.pos.x() else b.pos.x(); const right_a = a.pos.x() + a.size.x(); const right_b = b.pos.x() + b.size.x(); const right = if (right_a < right_b) right_a else right_b; const top = if (a.pos.y() > b.pos.y()) a.pos.y() else b.pos.y(); const bottom_a = a.pos.y() + a.size.y(); const bottom_b = b.pos.y() + b.size.y(); const bottom = if (bottom_a < bottom_b) bottom_a else bottom_b; if (left < right and top < bottom) { return .{ .pos = vec2(left, top), .size = vec2(right - left, bottom - top), }; } return null; } }; pub const Circle = struct { pos: Vec2, radius: f32, pub fn collidesRect(a: Circle, b: Rectangle) bool { var near_x_edge = a.pos.x(); var near_y_edge = a.pos.y(); if (a.pos.x() < b.pos.x()) { near_x_edge = b.pos.x(); // left edge } else if (a.pos.x() > b.pos.x() + b.size.x()) { near_x_edge = b.pos.x() + b.size.x(); // right edge } if (a.pos.y() < b.pos.y()) { near_y_edge = b.pos.y(); // top edge } else if (a.pos.y() > b.pos.y() + b.size.y()) { near_y_edge = b.pos.y() + b.size.y(); // bottom edge } // get distance from closest edges const dist_x = a.pos.x() - near_x_edge; const dist_y = a.pos.y() - near_y_edge; const dist = @sqrt((dist_x * dist_x) + (dist_y * dist_y)); // if the distance is less than the radius, collision! return dist <= a.radius; } test collidesRect { const a: Circle = .{ .pos = vec2(2, 3), .radius = 5 }; var b: Rectangle = .{ .size = vec2(3, 2), .pos = vec2(6, 3) }; try testing.expect(bool, a.collidesRect(b)).eql(true); b.pos = vec2(7.1, 3); try testing.expect(bool, a.collidesRect(b)).eql(false); } pub fn collidesCircle(a: Circle, b: Circle) bool { // get distance between the circle's centers // use the Pythagorean Theorem to compute the distance const dist_x = a.pos.x() - b.pos.x(); const dist_y = a.pos.y() - b.pos.y(); const distance = @sqrt((dist_x * dist_x) + (dist_y * dist_y)); // if the distance is less than the sum of the circle's // radii, the circles are touching! return distance <= a.radius + b.radius; } test collidesCircle { const a: Circle = .{ .pos = vec2(2, 3), .radius = 3 }; var b: Circle = .{ .pos = vec2(9, 3), .radius = 4 }; try testing.expect(bool, a.collidesCircle(b)).eql(true); b.pos = vec2(9.1, 3); try testing.expect(bool, a.collidesCircle(b)).eql(false); } }; pub const Point = struct { pos: Vec2, pub fn collidesRect(a: Point, b: Rectangle) bool { return a.pos.x() >= b.pos.x() and a.pos.x() <= b.pos.x() + b.size.x() and a.pos.y() >= b.pos.y() and a.pos.y() <= b.pos.y() + b.size.y(); } test collidesRect { const a: Point = .{ .pos = vec2(6, 4) }; var b: Rectangle = .{ .pos = vec2(6, 3), .size = vec2(3, 2) }; try testing.expect(bool, a.collidesRect(b)).eql(true); b.pos = vec2(9.1, 4); try testing.expect(bool, a.collidesRect(b)).eql(false); } pub fn collidesCircle(a: Point, b: Circle) bool { const dist_x = a.pos.x() - b.pos.x(); const dist_y = a.pos.y() - b.pos.y(); const distance = @sqrt((dist_x * dist_x) + (dist_y * dist_y)); return distance <= b.radius; } test collidesCircle { const a: Point = .{ .pos = vec2(6, 4) }; var b: Circle = .{ .pos = vec2(6, 3), .radius = 3 }; try testing.expect(bool, a.collidesCircle(b)).eql(true); b.pos = vec2(9.1, 4); try testing.expect(bool, a.collidesCircle(b)).eql(false); } // TODO: add test for this function pub fn collidesPoly(point: Point, vertices: []const Vec2) bool { std.debug.assert(vertices.len > 2); var collision = false; const px = point.pos.x(); const py = point.pos.y(); for (vertices, 1..) |vc, i| { // Get next vertex in list. // If we've hit the end, wrap around to first. const vn = if (i == vertices.len) vertices[0] else vertices[i]; if ((vc.y() > py) != (vn.y() > py) and px < (vn.x() - vc.x()) * (py - vc.y()) / (vn.y() - vc.y()) + vc.x()) { collision = !collision; } } return collision; } // TODO: add test for this function pub fn collidesTriangle(point: Point, vertices: []const Vec2) bool { std.debug.assert(vertices.len == 3); const p1 = vertices[0]; const p2 = vertices[1]; const p3 = vertices[2]; const alpha = ((p2.y() - p3.y()) * (point.pos.x() - p3.x()) + (p3.x() - p2.x()) * (point.pos.y() - p3.y())) / ((p2.y() - p3.y()) * (p1.x() - p3.x()) + (p3.x() - p2.x()) * (p1.y() - p3.y())); const beta = ((p3.y() - p1.y()) * (point.pos.x() - p3.x()) + (p1.x() - p3.x()) * (point.pos.y() - p3.y())) / ((p2.y() - p3.y()) * (p1.x() - p3.x()) + (p3.x() - p2.x()) * (p1.y() - p3.y())); const gamma = 1 - alpha - beta; return (alpha > 0) and (beta > 0) and (gamma > 0); } // TODO: add test for this function pub fn collidesLine(point: Point, line: Line) bool { const dxc = point.pos.x() - line.start.x(); const dyc = point.pos.y() - line.start.y(); const dxl = line.end.x() - line.start.x(); const dyl = line.end.y() - line.start.y(); const cross = dxc * dyl - dyc * dxl; if (@abs(cross) < line.threshold * @max(@abs(dxl), @abs(dyl))) { if (@abs(dxl) >= @abs(dyl)) { if (dxl > 0) { return (line.start.x() <= point.pos.x()) and (point.pos.x() <= line.end.x()); } else { return (line.end.x() <= point.pos.x()) and (point.pos.x() <= line.start.x()); } } else { if (dyl > 0) { return (line.start.y() <= point.pos.y()) and (point.pos.y() <= line.end.y()); } else { return (line.end.y() <= point.pos.y()) and (point.pos.y() <= line.start.y()); } } } return false; } }; pub const Line = struct { start: Vec2, end: Vec2, threshold: f32, // TODO: add test for this function pub fn collidesLine(a: Line, b: Line) bool { const start_dist = a.start.sub(&b.start); const b_end_dist = b.end.sub(&b.start); const a_end_dist = a.end.sub(&a.start); const div = b_end_dist.y() * a_end_dist.x() - b_end_dist.x() * a_end_dist.y(); const ua = b_end_dist.x() * start_dist.y() - b_end_dist.y() * start_dist.x() / div; const ub = a_end_dist.x() * start_dist.y() - a_end_dist.y() * start_dist.x() / div; return ua >= 0 and ua <= 1 and ub >= 0 and ub <= 1; } };