// TODO: // - handle textures better with texture atlas // - handle adding and removing triangles and quads better const std = @import("std"); const mach = @import("mach"); const gpu = @import("gpu"); const zm = @import("zmath"); const zigimg = @import("zigimg"); const glfw = @import("glfw"); const draw = @import("draw.zig"); const Atlas = @import("atlas.zig").Atlas; const ft = @import("freetype"); const Label = @import("label.zig"); const ResizableLabel = @import("resizable_label.zig"); pub const App = @This(); const AtlasRGB8 = Atlas(zigimg.color.Rgba32); pipeline: *gpu.RenderPipeline, queue: *gpu.Queue, vertex_buffer: *gpu.Buffer, vertices: std.ArrayList(draw.Vertex), update_vertex_buffer: bool, vertex_uniform_buffer: *gpu.Buffer, update_vertex_uniform_buffer: bool, frag_uniform_buffer: *gpu.Buffer, fragment_uniform_list: std.ArrayList(draw.FragUniform), update_frag_uniform_buffer: bool, bind_group: *gpu.BindGroup, texture_atlas_data: AtlasRGB8, pub fn init(app: *App, core: *mach.Core) !void { const queue = core.device.getQueue(); // TODO: Refactor texture atlas size number app.texture_atlas_data = try AtlasRGB8.init(core.allocator, 1280); const atlas_size = gpu.Extent3D{ .width = app.texture_atlas_data.size, .height = app.texture_atlas_data.size }; const atlas_float_size = @intToFloat(f32, app.texture_atlas_data.size); const texture = core.device.createTexture(&.{ .size = atlas_size, .format = .rgba8_unorm, .usage = .{ .texture_binding = true, .copy_dst = true, .render_attachment = true, }, }); const data_layout = gpu.Texture.DataLayout{ .bytes_per_row = @intCast(u32, atlas_size.width * 4), .rows_per_image = @intCast(u32, atlas_size.height), }; var img = try zigimg.Image.fromMemory(core.allocator, @embedFile("./assets/gotta-go-fast.png")); defer img.deinit(); const atlas_img_region = try app.texture_atlas_data.reserve(core.allocator, @truncate(u32, img.width), @truncate(u32, img.height)); const img_uv_data = atlas_img_region.getUVData(atlas_float_size); switch (img.pixels) { .rgba32 => |pixels| app.texture_atlas_data.set(atlas_img_region, pixels), .rgb24 => |pixels| { const data = try rgb24ToRgba32(core.allocator, pixels); defer data.deinit(core.allocator); app.texture_atlas_data.set(atlas_img_region, data.rgba32); }, else => @panic("unsupported image color format"), } const white_tex_scale = 80; var atlas_white_region = try app.texture_atlas_data.reserve(core.allocator, white_tex_scale, white_tex_scale); atlas_white_region.x += 1; atlas_white_region.y += 1; atlas_white_region.width -= 2; atlas_white_region.height -= 2; const white_texture_uv_data = atlas_white_region.getUVData(atlas_float_size); var white_tex_data = try core.allocator.alloc(zigimg.color.Rgba32, white_tex_scale * white_tex_scale); defer core.allocator.free(white_tex_data); std.mem.set(zigimg.color.Rgba32, white_tex_data, zigimg.color.Rgba32.initRgb(0xff, 0xff, 0xff)); app.texture_atlas_data.set(atlas_white_region, white_tex_data); app.vertices = try std.ArrayList(draw.Vertex).initCapacity(core.allocator, 9); app.fragment_uniform_list = try std.ArrayList(draw.FragUniform).initCapacity(core.allocator, 3); // Quick test for using freetype const lib = try ft.Library.init(); defer lib.deinit(); const size_multiplier = 5; const character = "è"; var label = try Label.init(lib, "libs/freetype/upstream/assets/FiraSans-Regular.ttf", 0, 110 * size_multiplier, core.allocator); defer label.deinit(); // try label.print(app, "All your game's bases are belong to us èçòà", .{}, @Vector(2, f32){ 0, 420 }, @Vector(4, f32){ 1, 1, 1, 1 }); try label.print(app, character, .{}, @Vector(2, f32){ 50 * size_multiplier, 40 }, @Vector(4, f32){ 1, 1, 1, 1 }); var resizable_label: ResizableLabel = undefined; try resizable_label.init(lib, "libs/freetype/upstream/assets/FiraSans-Regular.ttf", 0, core.allocator, white_texture_uv_data); defer resizable_label.deinit(); try resizable_label.print(app, character, .{}, @Vector(4, f32){ 0, 40, 0, 0 }, @Vector(4, f32){ 1, 1, 1, 1 }, 80 * size_multiplier); queue.writeTexture( &.{ .texture = texture }, &data_layout, &.{ .width = app.texture_atlas_data.size, .height = app.texture_atlas_data.size }, app.texture_atlas_data.data, ); const wsize = core.getWindowSize(); const window_width = @intToFloat(f32, wsize.width); const window_height = @intToFloat(f32, wsize.height); const triangle_scale = 250; _ = window_width; _ = window_height; _ = triangle_scale; _ = img_uv_data; // try draw.equilateralTriangle(app, .{ window_width / 2, window_height / 2 }, triangle_scale, .{}, img_uv_data); // try draw.equilateralTriangle(app, .{ window_width / 2, window_height / 2 - triangle_scale }, triangle_scale, .{ .type = .concave }, img_uv_data); // try draw.equilateralTriangle(app, .{ window_width / 2 - triangle_scale, window_height / 2 - triangle_scale / 2 }, triangle_scale, .{ .type = .convex }, white_texture_uv_data); // try draw.quad(app, .{ 0, 0 }, .{ 480, 480 }, .{}, .{ .bottom_left = .{ 0, 0 }, .width_and_height = .{ 1, 1 } }); // try draw.circle(app, .{ window_width / 2, window_height / 2 }, window_height / 2 - 10, .{ 0, 0.5, 0.75, 1.0 }, white_texture_uv_data); const vs_module = core.device.createShaderModuleWGSL("vert.wgsl", @embedFile("vert.wgsl")); const fs_module = core.device.createShaderModuleWGSL("frag.wgsl", @embedFile("frag.wgsl")); const blend = gpu.BlendState{ .color = .{ .operation = .add, .src_factor = .src_alpha, .dst_factor = .one_minus_src_alpha, }, .alpha = .{ .operation = .add, .src_factor = .one, .dst_factor = .zero, }, }; const color_target = gpu.ColorTargetState{ .format = core.swap_chain_format, .blend = &blend, .write_mask = gpu.ColorWriteMaskFlags.all, }; const fragment = gpu.FragmentState.init(.{ .module = fs_module, .entry_point = "main", .targets = &.{color_target}, }); const vbgle = gpu.BindGroupLayout.Entry.buffer(0, .{ .vertex = true }, .uniform, true, 0); const fbgle = gpu.BindGroupLayout.Entry.buffer(1, .{ .fragment = true }, .read_only_storage, true, 0); const sbgle = gpu.BindGroupLayout.Entry.sampler(2, .{ .fragment = true }, .filtering); const tbgle = gpu.BindGroupLayout.Entry.texture(3, .{ .fragment = true }, .float, .dimension_2d, false); const bgl = core.device.createBindGroupLayout( &gpu.BindGroupLayout.Descriptor.init(.{ .entries = &.{ vbgle, fbgle, sbgle, tbgle }, }), ); const bind_group_layouts = [_]*gpu.BindGroupLayout{bgl}; const pipeline_layout = core.device.createPipelineLayout(&gpu.PipelineLayout.Descriptor.init(.{ .bind_group_layouts = &bind_group_layouts, })); const pipeline_descriptor = gpu.RenderPipeline.Descriptor{ .fragment = &fragment, .layout = pipeline_layout, .vertex = gpu.VertexState.init(.{ .module = vs_module, .entry_point = "main", .buffers = &.{draw.VERTEX_BUFFER_LAYOUT}, }), }; const vertex_buffer = core.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .vertex = true }, .size = @sizeOf(draw.Vertex) * app.vertices.items.len, .mapped_at_creation = false, }); const vertex_uniform_buffer = core.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .uniform = true }, .size = @sizeOf(draw.VertexUniform), .mapped_at_creation = false, }); const frag_uniform_buffer = core.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .storage = true }, .size = @sizeOf(draw.FragUniform) * app.fragment_uniform_list.items.len, .mapped_at_creation = false, }); const sampler = core.device.createSampler(&.{ // .mag_filter = .linear, // .min_filter = .linear, }); const bind_group = core.device.createBindGroup( &gpu.BindGroup.Descriptor.init(.{ .layout = bgl, .entries = &.{ gpu.BindGroup.Entry.buffer(0, vertex_uniform_buffer, 0, @sizeOf(draw.VertexUniform)), gpu.BindGroup.Entry.buffer(1, frag_uniform_buffer, 0, @sizeOf(draw.FragUniform) * app.vertices.items.len / 3), gpu.BindGroup.Entry.sampler(2, sampler), gpu.BindGroup.Entry.textureView(3, texture.createView(&gpu.TextureView.Descriptor{ .dimension = .dimension_2d })), }, }), ); app.pipeline = core.device.createRenderPipeline(&pipeline_descriptor); app.queue = queue; app.vertex_buffer = vertex_buffer; app.vertex_uniform_buffer = vertex_uniform_buffer; app.frag_uniform_buffer = frag_uniform_buffer; app.bind_group = bind_group; app.update_vertex_buffer = true; app.update_vertex_uniform_buffer = true; app.update_frag_uniform_buffer = true; vs_module.release(); fs_module.release(); pipeline_layout.release(); bgl.release(); } pub fn deinit(app: *App, core: *mach.Core) void { app.vertex_buffer.release(); app.vertex_uniform_buffer.release(); app.frag_uniform_buffer.release(); app.bind_group.release(); app.vertices.deinit(); app.fragment_uniform_list.deinit(); app.texture_atlas_data.deinit(core.allocator); } pub fn update(app: *App, core: *mach.Core) !void { while (core.pollEvent()) |event| { switch (event) { .key_press => |ev| { if (ev.key == .space) core.setShouldClose(true); }, else => {}, } } const back_buffer_view = core.swap_chain.?.getCurrentTextureView(); const color_attachment = gpu.RenderPassColorAttachment{ .view = back_buffer_view, .clear_value = std.mem.zeroes(gpu.Color), .load_op = .clear, .store_op = .store, }; const encoder = core.device.createCommandEncoder(null); const render_pass_info = gpu.RenderPassDescriptor.init(.{ .color_attachments = &.{color_attachment}, }); { if (app.update_vertex_buffer) { encoder.writeBuffer(app.vertex_buffer, 0, app.vertices.items); app.update_vertex_buffer = false; } if (app.update_frag_uniform_buffer) { encoder.writeBuffer(app.frag_uniform_buffer, 0, app.fragment_uniform_list.items); app.update_frag_uniform_buffer = false; } if (app.update_vertex_uniform_buffer) { encoder.writeBuffer(app.vertex_uniform_buffer, 0, &[_]draw.VertexUniform{try getVertexUniformBufferObject(core)}); app.update_vertex_uniform_buffer = false; } } const pass = encoder.beginRenderPass(&render_pass_info); pass.setPipeline(app.pipeline); pass.setVertexBuffer(0, app.vertex_buffer, 0, @sizeOf(draw.Vertex) * app.vertices.items.len); pass.setBindGroup(0, app.bind_group, &.{ 0, 0 }); pass.draw(@truncate(u32, app.vertices.items.len), 1, 0, 0); pass.end(); pass.release(); var command = encoder.finish(null); encoder.release(); app.queue.submit(&.{command}); command.release(); core.swap_chain.?.present(); back_buffer_view.release(); } pub fn resize(app: *App, _: *mach.Core, _: u32, _: u32) !void { app.update_vertex_uniform_buffer = true; } fn rgb24ToRgba32(allocator: std.mem.Allocator, in: []zigimg.color.Rgb24) !zigimg.color.PixelStorage { const out = try zigimg.color.PixelStorage.init(allocator, .rgba32, in.len); var i: usize = 0; while (i < in.len) : (i += 1) { out.rgba32[i] = zigimg.color.Rgba32{ .r = in[i].r, .g = in[i].g, .b = in[i].b, .a = 255 }; } return out; } // Move to draw.zig pub fn getVertexUniformBufferObject(core: *mach.Core) !draw.VertexUniform { // Note: We use window width/height here, not framebuffer width/height. // On e.g. macOS, window size may be 640x480 while framebuffer size may be // 1280x960 (subpixels.) Doing this lets us use a pixel, not subpixel, // coordinate system. const window_size = core.getWindowSize(); const proj = zm.orthographicRh( @intToFloat(f32, window_size.width), @intToFloat(f32, window_size.height), -100, 100, ); const mvp = zm.mul(proj, zm.translation(-1, -1, 0)); return draw.VertexUniform{ .mat = mvp, }; }