const std = @import("std"); const builtin = @import("builtin"); const mach = @import("main.zig"); const sysaudio = mach.sysaudio; pub const Opus = @import("mach-opus"); const Audio = @This(); pub const mach_module = .mach_audio; pub const mach_systems = .{ .init, .tick, .deinit }; const log = std.log.scoped(mach_module); // The number of milliseconds worth of audio to render ahead of time. The lower this number is, the // less latency there is in playing new audio. The higher this number is, the less chance there is // of glitchy audio playback. // // By default, we use three times 1/60th of a second - i.e. 3 frames could drop before audio would // stop playing smoothly assuming a 60hz application render rate. ms_render_ahead: f32 = 16, buffers: mach.Objects( .{}, struct { /// The actual audio samples samples: []const f32, /// The number of channels in the samples buffer channels: u8, /// Volume multiplier volume: f32 = 1.0, /// Whether the buffer should be playing currently playing: bool = true, /// The currently playhead of the samples index: usize = 0, }, ), /// Whether to debug audio sync issues debug: bool = false, /// Callback which is ran when buffers change state from playing -> not playing on_state_change: ?mach.FunctionID = null, /// Audio player (has global volume controls) player: sysaudio.Player, // Internal fields allocator: std.mem.Allocator, ctx: sysaudio.Context, output: SampleBuffer, mixing_buffer: ?std.ArrayListUnmanaged(f32) = null, shutdown: std.atomic.Value(bool) = .init(false), mod: mach.Mod(Audio), driver_needs_num_samples: usize = 0, const SampleBuffer = std.fifo.LinearFifo(u8, .Dynamic); pub fn init(audio: *Audio, audio_mod: mach.Mod(Audio)) !void { // TODO(allocator): find a better way for modules to get allocators const allocator = std.heap.c_allocator; const ctx = try sysaudio.Context.init(null, allocator, .{}); try ctx.refresh(); // TODO(audio): let people handle these errors // TODO(audio): enable selecting non-default devices const device = ctx.defaultDevice(.playback) orelse return error.NoDeviceFound; var player = try ctx.createPlayer(device, writeFn, .{ .user_data = audio, .sample_rate = 48000 }); log.info("opened audio device: channels={} sample_rate={} format={s}", .{ player.channels().len, player.sampleRate(), @tagName(player.format()) }); const debug_str = std.process.getEnvVarOwned( allocator, "MACH_DEBUG_AUDIO", ) catch |err| switch (err) { error.EnvironmentVariableNotFound => null, else => return err, }; const debug = if (debug_str) |s| blk: { defer allocator.free(s); break :blk std.ascii.eqlIgnoreCase(s, "true"); } else false; audio.* = .{ .buffers = audio.buffers, .allocator = allocator, .ctx = ctx, .player = player, .output = SampleBuffer.init(allocator), .debug = debug, .mod = audio_mod, }; try player.start(); } pub fn deinit(audio: *Audio) void { audio.shutdown.store(true, .release); audio.player.deinit(); audio.ctx.deinit(); if (audio.mixing_buffer) |*b| b.deinit(audio.allocator); } /// Audio.tick is called on the high-priority OS audio thread when the audio driver is waiting for /// more audio samples because the audio.output buffer does not currently have enough to satisfy the /// driver. /// /// Its goal is to fill the audio.output buffer with enough samples to satisfy the immediate /// requirements of the audio driver (audio.driver_needs_num_samples), and prepare some amount of /// additional samples ahead of time to satisfy the driver in the future. pub fn tick(audio: *Audio, audio_mod: mach.Mod(Audio)) !void { // If the other thread called deinit(), return. if (audio.shutdown.load(.acquire)) { return; } const allocator = audio.allocator; const player = &audio.player; const player_channels: u8 = @intCast(player.channels().len); const driver_needs = audio.driver_needs_num_samples; // How many audio samples we will render ahead by const samples_per_ms = @as(f32, @floatFromInt(player.sampleRate())) / 1000.0; const render_ahead: u32 = @as(u32, @intFromFloat(@trunc(audio.ms_render_ahead * samples_per_ms))) * player_channels; // Our goal is to satisfy the driver's immediate needs, plus prepare render_head number of samples. const goal_pre_rendered = driver_needs + render_ahead; const already_prepared = audio.output.readableLength() / player.format().size(); const render_num_samples = if (already_prepared > goal_pre_rendered) 0 else goal_pre_rendered - already_prepared; if (render_num_samples < 0) @panic("invariant: Audio.tick ran when more audio samples are not needed"); // Ensure our f32 mixing buffer has enough space for the samples we will render right now. // This will allocate to grow but never shrink. var mixing_buffer = if (audio.mixing_buffer) |*b| b else blk: { const b = try std.ArrayListUnmanaged(f32).initCapacity(allocator, render_num_samples); audio.mixing_buffer = b; break :blk &audio.mixing_buffer.?; }; try mixing_buffer.resize(allocator, render_num_samples); // grows, but never shrinks // Zero the mixing buffer to silence: if no audio is mixed in below, then we want silence // not undefined memory noise. @memset(mixing_buffer.items, 0); var did_state_change = false; { audio.buffers.lock(); defer audio.buffers.unlock(); var buffers = audio.buffers.slice(); while (buffers.next()) |buf_id| { var buffer = audio.buffers.getValue(buf_id); if (!buffer.playing) continue; defer audio.buffers.setValue(buf_id, buffer); const channels_diff = player_channels - buffer.channels + 1; const to_read = (@min(buffer.samples.len - buffer.index, mixing_buffer.items.len) / channels_diff) + @rem(@min(buffer.samples.len - buffer.index, mixing_buffer.items.len), channels_diff); if (buffer.channels == 1 and player_channels > 1) { // Duplicate samples for mono sounds var i: usize = 0; for (buffer.samples[buffer.index..][0..to_read]) |sample| { mixSamplesDuplicate(mixing_buffer.items[i..][0..player_channels], sample * buffer.volume); i += player_channels; } } else { mixSamples(mixing_buffer.items[0..to_read], buffer.samples[buffer.index..][0..to_read], buffer.volume); } if (buffer.index + to_read >= buffer.samples.len) { // No longer playing, we've read all samples did_state_change = true; buffer.playing = false; buffer.index = 0; } else buffer.index = buffer.index + to_read; } } if (did_state_change) if (audio.on_state_change) |f| audio_mod.run(f); // Write our rendered samples to the fifo, expanding its size as needed and converting our f32 // samples to the format the driver expects. const out_buffer_len = render_num_samples * player.format().size(); const out_buffer = try audio.output.writableWithSize(out_buffer_len); // TODO(audio): handle potential OOM here better std.debug.assert(mixing_buffer.items.len == render_num_samples); sysaudio.convertTo( f32, mixing_buffer.items, player.format(), out_buffer[0..out_buffer_len], // writableWithSize may return a larger slice than needed ); audio.output.update(out_buffer_len); } /// Called by the system audio driver when the output buffer needs to be filled. Called on a /// dedicated OS thread for high-priority audio. Its goal is to fill the output buffer as quickly /// as possible and return, else audio skips will occur. fn writeFn(audio_opaque: ?*anyopaque, output: []u8) void { const audio: *Audio = @ptrCast(@alignCast(audio_opaque)); const format_size = audio.player.format().size(); // If the other thread called deinit(), write zeros to the buffer (no sound) and return. if (audio.shutdown.load(.acquire)) { @memset(output, 0); return; } // Do we have enough audio samples in our audio.output buffer to fill the output buffer? // // This is the most common case, because audio.output should have much more data prepared // ahead of time than what the audio driver needs. var read_slice = audio.output.readableSlice(0); if (read_slice.len >= output.len) { if (read_slice.len > output.len) read_slice = read_slice[0..output.len]; @memcpy(output[0..read_slice.len], read_slice); audio.output.discard(read_slice.len); return; } // At this point, we don't have enough audio data prepared in our audio.output buffer. so we // must prepare it now. while (true) { // Run the audio tick function, which should fill the audio.output buffer with more audio // samples. audio.driver_needs_num_samples = @divExact(output.len, format_size); audio.mod.call(.tick); // Check if we now have enough data in our audio.output buffer. If we do, then we're done. read_slice = audio.output.readableSlice(0); if (read_slice.len >= output.len) { if (read_slice.len > output.len) read_slice = read_slice[0..output.len]; @memcpy(output[0..read_slice.len], read_slice); audio.output.discard(read_slice.len); return; } // The audio tick didn't produce enough data, this might indicate some subtle mismatch in // the audio tick function not producing a multiple of the audio driver's actual buffer // size. if (audio.debug) log.debug("resync, found {} samples but need {} (nano timestamp {})", .{ @divExact(read_slice.len, format_size), @divExact(output.len, format_size), std.time.nanoTimestamp(), }); // If the other thread called deinit(), write zeros to the buffer (no sound) and return. if (audio.shutdown.load(.acquire)) { @memset(output, 0); return; } } } // TODO(audio): remove this switch, currently ReleaseFast/ReleaseSmall have some weird behavior if // we use suggestVectorLength const vector_length = switch (builtin.mode) { .Debug, .ReleaseSafe => std.simd.suggestVectorLength(f32), else => null, }; inline fn mixSamples(a: []f32, b: []const f32, volume: f32) void { std.debug.assert(a.len >= b.len); var i: usize = 0; // use SIMD when available if (vector_length) |vec_len| { const Vec = @Vector(vec_len, f32); const vec_blocks_len = b.len - (b.len % vec_len); while (i < vec_blocks_len) : (i += vec_len) { const b_vec: Vec = b[i..][0..vec_len].*; const a_vec: *Vec = @ptrCast(@alignCast(a[i..][0..vec_len])); a_vec.* += b_vec * @as(Vec, @splat(volume)); } } for (a[i..b.len], b[i..]) |*a_sample, b_sample| { a_sample.* += b_sample * volume; } } inline fn mixSamplesDuplicate(a: []f32, b: f32) void { var i: usize = 0; // use SIMD when available if (vector_length) |vec_len| { const Vec = @Vector(vec_len, f32); const vec_blocks_len = a.len - (a.len % vec_len); while (i < vec_blocks_len) : (i += vec_len) { const a_vec: *Vec = @ptrCast(@alignCast(a[i..][0..vec_len])); a_vec.* += @as(Vec, @splat(b)); } } for (a[i..]) |*a_sample| { a_sample.* += b; } }