mach/examples/cubemap/main.zig
Stephen Gutekanst 78cf48e022 examples: fix cubemap compilation
self-hosted compiler picked up alignment issues better.

fixes hexops/mach#578

Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
2022-10-14 11:20:47 -07:00

352 lines
13 KiB
Zig

const std = @import("std");
const mach = @import("mach");
const gpu = @import("gpu");
const glfw = @import("glfw");
const zm = @import("zmath");
const zigimg = @import("zigimg");
const Vertex = @import("cube_mesh.zig").Vertex;
const vertices = @import("cube_mesh.zig").vertices;
const UniformBufferObject = struct {
mat: zm.Mat,
};
var timer: mach.Timer = undefined;
pipeline: *gpu.RenderPipeline,
queue: *gpu.Queue,
vertex_buffer: *gpu.Buffer,
uniform_buffer: *gpu.Buffer,
bind_group: *gpu.BindGroup,
depth_texture: ?*gpu.Texture,
depth_texture_view: *gpu.TextureView,
pub const App = @This();
pub fn init(app: *App, core: *mach.Core) !void {
timer = try mach.Timer.start();
const vs_module = core.device.createShaderModuleWGSL("vert.wgsl", @embedFile("vert.wgsl"));
const vertex_attributes = [_]gpu.VertexAttribute{
.{ .format = .float32x4, .offset = @offsetOf(Vertex, "pos"), .shader_location = 0 },
.{ .format = .float32x2, .offset = @offsetOf(Vertex, "uv"), .shader_location = 1 },
};
const vertex_buffer_layout = gpu.VertexBufferLayout.init(.{
.array_stride = @sizeOf(Vertex),
.step_mode = .vertex,
.attributes = &vertex_attributes,
});
const fs_module = core.device.createShaderModuleWGSL("frag.wgsl", @embedFile("frag.wgsl"));
const blend = gpu.BlendState{
.color = .{
.operation = .add,
.src_factor = .src_alpha,
.dst_factor = .one_minus_src_alpha,
},
.alpha = .{
.operation = .add,
.src_factor = .one,
.dst_factor = .zero,
},
};
const color_target = gpu.ColorTargetState{
.format = core.swap_chain_format,
.blend = &blend,
.write_mask = gpu.ColorWriteMaskFlags.all,
};
const fragment = gpu.FragmentState.init(.{
.module = fs_module,
.entry_point = "main",
.targets = &.{color_target},
});
const pipeline_descriptor = gpu.RenderPipeline.Descriptor{
.fragment = &fragment,
// Enable depth testing so that the fragment closest to the camera
// is rendered in front.
.depth_stencil = &.{
.format = .depth24_plus,
.depth_write_enabled = true,
.depth_compare = .less,
},
.vertex = gpu.VertexState.init(.{
.module = vs_module,
.entry_point = "main",
.buffers = &.{vertex_buffer_layout},
}),
.primitive = .{
// Since the cube has its face pointing outwards, cull_mode must be
// set to .front or .none here since we are inside the cube looking out.
// Ideally you would set this to .back and have a custom cube primitive
// with the faces pointing towards the inside of the cube.
.cull_mode = .none,
},
};
const pipeline = core.device.createRenderPipeline(&pipeline_descriptor);
const vertex_buffer = core.device.createBuffer(&.{
.usage = .{ .vertex = true },
.size = @sizeOf(Vertex) * vertices.len,
.mapped_at_creation = true,
});
var vertex_mapped = vertex_buffer.getMappedRange(Vertex, 0, vertices.len);
std.mem.copy(Vertex, vertex_mapped.?, vertices[0..]);
vertex_buffer.unmap();
const uniform_buffer = core.device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(UniformBufferObject),
.mapped_at_creation = false,
});
// Create a sampler with linear filtering for smooth interpolation.
const sampler = core.device.createSampler(&.{
.mag_filter = .linear,
.min_filter = .linear,
});
const queue = core.device.getQueue();
// WebGPU expects the cubemap textures in this order: (+X,-X,+Y,-Y,+Z,-Z)
var images: [6]zigimg.Image = undefined;
images[0] = try zigimg.Image.fromMemory(core.allocator, @embedFile("./assets/skybox/posx.png"));
defer images[0].deinit();
images[1] = try zigimg.Image.fromMemory(core.allocator, @embedFile("./assets/skybox/negx.png"));
defer images[1].deinit();
images[2] = try zigimg.Image.fromMemory(core.allocator, @embedFile("./assets/skybox/posy.png"));
defer images[2].deinit();
images[3] = try zigimg.Image.fromMemory(core.allocator, @embedFile("./assets/skybox/negy.png"));
defer images[3].deinit();
images[4] = try zigimg.Image.fromMemory(core.allocator, @embedFile("./assets/skybox/posz.png"));
defer images[4].deinit();
images[5] = try zigimg.Image.fromMemory(core.allocator, @embedFile("./assets/skybox/negz.png"));
defer images[5].deinit();
// Use the first image of the set for sizing
const img_size = gpu.Extent3D{
.width = @intCast(u32, images[0].width),
.height = @intCast(u32, images[0].height),
};
// We set depth_or_array_layers to 6 here to indicate there are 6 images in this texture
const tex_size = gpu.Extent3D{
.width = @intCast(u32, images[0].width),
.height = @intCast(u32, images[0].height),
.depth_or_array_layers = 6,
};
// Same as a regular texture, but with a Z of 6 (defined in tex_size)
const cube_texture = core.device.createTexture(&.{
.size = tex_size,
.format = .rgba8_unorm,
.dimension = .dimension_2d,
.usage = .{
.texture_binding = true,
.copy_dst = true,
.render_attachment = false,
},
});
const data_layout = gpu.Texture.DataLayout{
.bytes_per_row = @intCast(u32, images[0].width * 4),
.rows_per_image = @intCast(u32, images[0].height),
};
const encoder = core.device.createCommandEncoder(null);
// We have to create a staging buffer, copy all the image data into the
// staging buffer at the correct Z offset, encode a command to copy
// the buffer to the texture for each image, then push it to the command
// queue
var staging_buff: [6]*gpu.Buffer = undefined;
var i: u32 = 0;
while (i < 6) : (i += 1) {
staging_buff[i] = core.device.createBuffer(&.{
.usage = .{ .copy_src = true, .map_write = true },
.size = @intCast(u64, images[0].width) * @intCast(u64, images[0].height) * @sizeOf(u32),
.mapped_at_creation = true,
});
switch (images[i].pixels) {
.rgba32 => |pixels| {
// Map a section of the staging buffer
var staging_map = staging_buff[i].getMappedRange(u32, 0, @intCast(u64, images[i].width) * @intCast(u64, images[i].height));
// Copy the image data into the mapped buffer
std.mem.copy(u32, staging_map.?, @ptrCast([]u32, @alignCast(@alignOf([]u32), pixels)));
// And release the mapping
staging_buff[i].unmap();
},
.rgb24 => |pixels| {
var staging_map = staging_buff[i].getMappedRange(u32, 0, @intCast(u64, images[i].width) * @intCast(u64, images[i].height));
// In this case, we have to convert the data to rgba32 first
const data = try rgb24ToRgba32(core.allocator, pixels);
defer data.deinit(core.allocator);
std.mem.copy(u32, staging_map.?, @ptrCast([]u32, @alignCast(@alignOf([]u32), data.rgba32)));
staging_buff[i].unmap();
},
else => @panic("unsupported image color format"),
}
// These define the source and target for the buffer to texture copy command
const copy_buff = gpu.ImageCopyBuffer{
.layout = data_layout,
.buffer = staging_buff[i],
};
const copy_tex = gpu.ImageCopyTexture{
.texture = cube_texture,
.origin = gpu.Origin3D{ .x = 0, .y = 0, .z = i },
};
// Encode the copy command, we do this for every image in the texture.
encoder.copyBufferToTexture(&copy_buff, &copy_tex, &img_size);
}
// Now that the commands to copy our buffer data to the texture is filled,
// push the encoded commands over to the queue and execute to get the
// texture filled with the image data.
var command = encoder.finish(null);
encoder.release();
queue.submit(&.{command});
command.release();
// The textureView in the bind group needs dimension defined as "dimension_cube".
const bind_group = core.device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = pipeline.getBindGroupLayout(0),
.entries = &.{
gpu.BindGroup.Entry.buffer(0, uniform_buffer, 0, @sizeOf(UniformBufferObject)),
gpu.BindGroup.Entry.sampler(1, sampler),
gpu.BindGroup.Entry.textureView(2, cube_texture.createView(&gpu.TextureView.Descriptor{ .dimension = .dimension_cube })),
},
}),
);
app.pipeline = pipeline;
app.queue = queue;
app.vertex_buffer = vertex_buffer;
app.uniform_buffer = uniform_buffer;
app.bind_group = bind_group;
app.depth_texture = null;
app.depth_texture_view = undefined;
vs_module.release();
fs_module.release();
}
pub fn deinit(app: *App, _: *mach.Core) void {
app.vertex_buffer.release();
app.uniform_buffer.release();
app.bind_group.release();
app.depth_texture.?.release();
app.depth_texture_view.release();
}
pub fn update(app: *App, core: *mach.Core) !void {
while (core.pollEvent()) |event| {
switch (event) {
.key_press => |ev| {
if (ev.key == .space)
core.close();
},
else => {},
}
}
const back_buffer_view = core.swap_chain.?.getCurrentTextureView();
const color_attachment = gpu.RenderPassColorAttachment{
.view = back_buffer_view,
.clear_value = .{ .r = 0.5, .g = 0.5, .b = 0.5, .a = 0.0 },
.load_op = .clear,
.store_op = .store,
};
const encoder = core.device.createCommandEncoder(null);
const render_pass_info = gpu.RenderPassDescriptor.init(.{
.color_attachments = &.{color_attachment},
.depth_stencil_attachment = &.{
.view = app.depth_texture_view,
.depth_clear_value = 1.0,
.depth_load_op = .clear,
.depth_store_op = .store,
},
});
{
const time = timer.read();
const aspect = @intToFloat(f32, core.current_desc.width) / @intToFloat(f32, core.current_desc.height);
const proj = zm.perspectiveFovRh((2 * std.math.pi) / 5.0, aspect, 0.1, 3000);
const model = zm.mul(
zm.scaling(1000, 1000, 1000),
zm.rotationX(std.math.pi / 2.0 * 3.0),
);
const view = zm.mul(
zm.mul(
zm.lookAtRh(
zm.f32x4(0, 0, 0, 1),
zm.f32x4(1, 0, 0, 1),
zm.f32x4(0, 0, 1, 0),
),
zm.rotationY(time * 0.2),
),
zm.rotationX((std.math.pi / 10.0) * std.math.sin(time)),
);
const mvp = zm.mul(zm.mul(zm.transpose(model), view), proj);
const ubo = UniformBufferObject{ .mat = mvp };
encoder.writeBuffer(app.uniform_buffer, 0, &[_]UniformBufferObject{ubo});
}
const pass = encoder.beginRenderPass(&render_pass_info);
pass.setPipeline(app.pipeline);
pass.setVertexBuffer(0, app.vertex_buffer, 0, @sizeOf(Vertex) * vertices.len);
pass.setBindGroup(0, app.bind_group, &.{});
pass.draw(vertices.len, 1, 0, 0);
pass.end();
pass.release();
var command = encoder.finish(null);
encoder.release();
app.queue.submit(&.{command});
command.release();
core.swap_chain.?.present();
back_buffer_view.release();
}
pub fn resize(app: *App, core: *mach.Core, width: u32, height: u32) !void {
// If window is resized, recreate depth buffer otherwise we cannot use it.
if (app.depth_texture != null) {
app.depth_texture.?.release();
app.depth_texture_view.release();
}
app.depth_texture = core.device.createTexture(&gpu.Texture.Descriptor{
.size = gpu.Extent3D{
.width = width,
.height = height,
},
.format = .depth24_plus,
.usage = .{
.render_attachment = true,
.texture_binding = true,
},
});
app.depth_texture_view = app.depth_texture.?.createView(&gpu.TextureView.Descriptor{
.format = .depth24_plus,
.dimension = .dimension_2d,
.array_layer_count = 1,
.mip_level_count = 1,
});
}
fn rgb24ToRgba32(allocator: std.mem.Allocator, in: []zigimg.color.Rgb24) !zigimg.color.PixelStorage {
const out = try zigimg.color.PixelStorage.init(allocator, .rgba32, in.len);
var i: usize = 0;
while (i < in.len) : (i += 1) {
out.rgba32[i] = zigimg.color.Rgba32{ .r = in[i].r, .g = in[i].g, .b = in[i].b, .a = 255 };
}
return out;
}