mach/examples/sysaudio/main.zig
Stephen Gutekanst 0a8e22bb49 examples: import mach-examples@20ceb359231ff284cf343dddba8cf25112ffe717
Helps hexops/mach#1165

Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
2024-03-06 11:08:19 -07:00

186 lines
6.3 KiB
Zig

// A simple tone engine.
//
// It renders 512 tones simultaneously, each with their own frequency and duration.
//
// `keyToFrequency` can be used to convert a keyboard key to a frequency, so that the
// keys asdfghj on your QWERTY keyboard will map to the notes C/D/E/F/G/A/B[4], the
// keys above qwertyu will map to C5 and the keys below zxcvbnm will map to C3.
//
// The duration is hard-coded to 1.5s. To prevent clicking, tones are faded in linearly over
// the first 1/64th duration of the tone. To provide a cool sustained effect, tones are faded
// out using 1-log10(x*10) (google it to see how it looks, it's strong for most of the duration of
// the note then fades out slowly.)
const std = @import("std");
const builtin = @import("builtin");
const mach = @import("mach");
const math = mach.math;
const sysaudio = mach.sysaudio;
pub const App = @This();
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
audio_ctx: sysaudio.Context,
player: sysaudio.Player,
playing: [512]Tone = std.mem.zeroes([512]Tone),
const Tone = struct {
frequency: f32,
sample_counter: usize,
duration: usize,
};
pub fn init(app: *App) !void {
try mach.core.init(.{});
app.audio_ctx = try sysaudio.Context.init(null, gpa.allocator(), .{});
errdefer app.audio_ctx.deinit();
try app.audio_ctx.refresh();
const device = app.audio_ctx.defaultDevice(.playback) orelse return error.NoDeviceFound;
app.player = try app.audio_ctx.createPlayer(device, writeCallback, .{ .user_data = app });
try app.player.start();
}
pub fn deinit(app: *App) void {
defer _ = gpa.deinit();
defer mach.core.deinit();
app.player.deinit();
app.audio_ctx.deinit();
}
pub fn update(app: *App) !bool {
var iter = mach.core.pollEvents();
while (iter.next()) |event| {
switch (event) {
.key_press => |ev| {
const vol = try app.player.volume();
switch (ev.key) {
.down => try app.player.setVolume(@max(0.0, vol - 0.1)),
.up => try app.player.setVolume(@min(1.0, vol + 0.1)),
else => {},
}
app.fillTone(keyToFrequency(ev.key));
},
.close => return true,
else => {},
}
}
if (builtin.cpu.arch != .wasm32) {
const back_buffer_view = mach.core.swap_chain.getCurrentTextureView().?;
mach.core.swap_chain.present();
back_buffer_view.release();
}
return false;
}
fn writeCallback(ctx: ?*anyopaque, output: []u8) void {
const app: *App = @as(*App, @ptrCast(@alignCast(ctx)));
// const seconds_per_frame = 1.0 / @as(f32, @floatFromInt(player.sampleRate()));
const frame_size = app.player.format().frameSize(@intCast(app.player.channels().len));
const frames = output.len / frame_size;
_ = frames;
var frame: usize = 0;
while (frame < output.len) : (frame += frame_size) {
// Calculate the audio sample we'll play on both channels for this frame
var sample: f32 = 0;
for (&app.playing) |*tone| {
if (tone.sample_counter >= tone.duration) continue;
tone.sample_counter += 1;
const sample_counter = @as(f32, @floatFromInt(tone.sample_counter));
const duration = @as(f32, @floatFromInt(tone.duration));
// The sine wave that plays the frequency.
const gain = 0.1;
const sine_wave = math.sin(tone.frequency * 2.0 * math.pi * sample_counter / @as(f32, @floatFromInt(app.player.sampleRate()))) * gain;
// A number ranging from 0.0 to 1.0 in the first 1/64th of the duration of the tone.
const fade_in = @min(sample_counter / (duration / 64.0), 1.0);
// A number ranging from 1.0 to 0.0 over half the duration of the tone.
const progression = sample_counter / duration; // 0.0 (tone start) to 1.0 (tone end)
const fade_out = 1.0 - math.clamp(math.log10(progression * 10.0), 0.0, 1.0);
// Mix this tone into the sample we'll actually play on e.g. the speakers, reducing
// sine wave intensity if we're fading in or out over the entire duration of the
// tone.
sample += sine_wave * fade_in * fade_out;
}
// Convert our float sample to the format the audio driver is working in
sysaudio.convertTo(
f32,
// Pass two samples (assume two channel audio)
// Note that in a real application this must match app.player.channels().len
&.{ sample, sample },
app.player.format(),
output[frame..][0..frame_size],
);
}
}
pub fn fillTone(app: *App, frequency: f32) void {
for (&app.playing) |*tone| {
if (tone.sample_counter >= tone.duration) {
tone.* = Tone{
.frequency = frequency,
.sample_counter = 0,
.duration = @as(usize, @intFromFloat(1.5 * @as(f32, @floatFromInt(app.player.sampleRate())))), // play the tone for 1.5s
};
return;
}
}
}
pub fn keyToFrequency(key: mach.core.Key) f32 {
// The frequencies here just come from a piano frequencies chart. You can google for them.
return switch (key) {
// First row of piano keys, the highest.
.q => 523.25, // C5
.w => 587.33, // D5
.e => 659.26, // E5
.r => 698.46, // F5
.t => 783.99, // G5
.y => 880.0, // A5
.u => 987.77, // B5
.i => 1046.5, // C6
.o => 1174.7, // D6
.p => 1318.5, // E6
.left_bracket => 1396.9, // F6
.right_bracket => 1568.0, // G6
// Second row of piano keys, the middle.
.a => 261.63, // C4
.s => 293.67, // D4
.d => 329.63, // E4
.f => 349.23, // F4
.g => 392.0, // G4
.h => 440.0, // A4
.j => 493.88, // B4
.k => 523.25, // C5
.l => 587.33, // D5
.semicolon => 659.26, // E5
.apostrophe => 698.46, // F5
// Third row of piano keys, the lowest.
.z => 130.81, // C3
.x => 146.83, // D3
.c => 164.81, // E3
.v => 174.61, // F3
.b => 196.00, // G3
.n => 220.0, // A3
.m => 246.94, // B3
.comma => 261.63, // C4
.period => 293.67, // D4
.slash => 329.63, // E5
else => 0.0,
};
}