mach/src/Core.zig
2024-10-25 12:21:24 -07:00

1142 lines
34 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const build_options = @import("build-options");
const mach = @import("main.zig");
const gpu = mach.gpu;
const log = std.log.scoped(.mach);
// Whether or not you can drive the main loop in a non-blocking fashion, or if the underlying
// platform must take control and drive the main loop itself.
pub const supports_non_blocking = switch (build_options.core_platform) {
// Platforms that support non-blocking mode.
.linux => true,
.windows => true,
.null => true,
// Platforms which take control of the main loop.
.wasm => false,
.darwin => false,
};
const EventQueue = std.fifo.LinearFifo(Event, .Dynamic);
/// Set this to true if you intend to drive the main loop yourself.
///
/// A panic will occur if `supports_non_blocking == false` for the platform.
pub var non_blocking = false;
pub const name = .mach_core;
pub const Mod = mach.Mod(@This());
pub const systems = .{
.init = .{ .handler = init, .description =
\\ Initialize mach.Core
},
.start = .{ .handler = start, .description =
\\ Indicates mach.Core should start its loop and begin scheduling your .app.tick system to run.
\\
\\ You should register core.state().on_tick and core.state().on_exit callbacks before scheduling
\\ this to run.
},
.update = .{ .handler = update, .description =
\\ TODO
},
.present_frame = .{ .handler = presentFrame, .description =
\\ Send this when rendering has finished and the swapchain should be presented.
},
.exit = .{ .handler = exit, .description =
\\ Send this when you would like to exit the application.
\\
\\ When the next .present_frame runs, then core.state().on_exit will be scheduled to run giving
\\ your app a chance to deinitialize itself after the last frame has been rendered, and
\\ core.state().on_tick will no longer be sent.
\\
\\ When core.state().on_exit runs, it must schedule .mach_core.deinit to run which will cause
\\ the app to finish.
},
.deinit = .{ .handler = deinit, .description =
\\ Send this once your app is fully deinitialized and you are ready for mach.Core to exit for
\\ good.
},
.started = .{ .handler = fn () void, .description =
\\ An interrupt signal that mach.Core sends once it has started. This is an interrupt signal to
\\ be used by the application entrypoint.
},
.frame_finished = .{ .handler = fn () void, .description =
\\ An interrupt signal that mach.Core sends once a frame has been finished. This is an interrupt
\\ signal to be used by the application entrypoint.
},
};
pub const components = .{
.title = .{ .type = [:0]u8, .description =
\\ Window title slice. Can be set with a format string and arguments via:
\\
\\ ```
\\ try core.state().printTitle(core_mod.state().main_window, "Hello, {s}!", .{"Mach"});
\\ ```
\\
\\ If setting this component yourself, ensure the buffer is allocated using core.state().allocator
\\ as it will be freed for you as part of the .deinit event.
},
.framebuffer_format = .{ .type = gpu.Texture.Format, .description =
\\ The texture format of the framebuffer
},
.framebuffer_width = .{ .type = u32, .description =
\\ The width of the framebuffer in texels
},
.framebuffer_height = .{ .type = u32, .description =
\\ The height of the framebuffer in texels
},
.width = .{ .type = u32, .description =
\\ The width of the window in virtual pixels
},
.height = .{ .type = u32, .description =
\\ The height of the window in virtual pixels
},
.fullscreen = .{ .type = bool, .description =
\\ Whether the window should be fullscreen (only respected at .start time)
},
};
/// Callback system invoked per tick (e.g. per-frame)
on_tick: ?mach.AnySystem = null,
/// Callback system invoked when application is exiting
on_exit: ?mach.AnySystem = null,
/// Main window of the application
main_window: mach.EntityID,
/// Current state of the application
state: enum {
running,
exiting,
deinitializing,
exited,
} = .running,
// TODO: handle window titles better
title: [256:0]u8 = undefined,
frame: mach.time.Frequency,
input: mach.time.Frequency,
swap_chain_update: std.Thread.ResetEvent = .{},
// GPU
instance: *gpu.Instance,
adapter: *gpu.Adapter,
device: *gpu.Device,
queue: *gpu.Queue,
surface: *gpu.Surface,
swap_chain: *gpu.SwapChain,
descriptor: gpu.SwapChain.Descriptor,
// Internal module state
allocator: std.mem.Allocator,
platform: Platform,
events: EventQueue,
input_state: InputState,
oom: std.Thread.ResetEvent = .{},
fn update(core: *Mod, entities: *mach.Entities.Mod) !void {
_ = core;
_ = entities;
}
fn init(core: *Mod, entities: *mach.Entities.Mod) !void {
// TODO: this needs to be removed.
const options: InitOptions = .{
.allocator = std.heap.c_allocator,
};
const allocator = options.allocator;
// TODO: fix all leaks and use options.allocator
try mach.sysgpu.Impl.init(allocator, .{});
const main_window = try entities.new();
try core.set(main_window, .fullscreen, false);
try core.set(main_window, .width, 1920 / 2);
try core.set(main_window, .height, 1080 / 2);
// Copy window title into owned buffer.
var title: [256:0]u8 = undefined;
if (options.title.len < title.len) {
@memcpy(title[0..options.title.len], options.title);
title[options.title.len] = 0;
}
var events = EventQueue.init(allocator);
try events.ensureTotalCapacity(8192);
// TODO: remove undefined initialization (disgusting!)
const platform: Platform = undefined;
core.init(.{
.allocator = allocator,
.main_window = main_window,
.events = events,
.input_state = .{},
.platform = platform,
// TODO: these should not be state, they should be components.
.title = title,
.frame = undefined,
.input = undefined,
.instance = undefined,
.adapter = undefined,
.device = undefined,
.queue = undefined,
.surface = undefined,
.swap_chain = undefined,
.descriptor = undefined,
});
const state = core.state();
try Platform.init(&state.platform, core, options);
state.instance = gpu.createInstance(null) orelse {
log.err("failed to create GPU instance", .{});
std.process.exit(1);
};
state.surface = state.instance.createSurface(&state.platform.surface_descriptor);
var response: RequestAdapterResponse = undefined;
state.instance.requestAdapter(&gpu.RequestAdapterOptions{
.compatible_surface = state.surface,
.power_preference = options.power_preference,
.force_fallback_adapter = .false,
}, &response, requestAdapterCallback);
if (response.status != .success) {
log.err("failed to create GPU adapter: {?s}", .{response.message});
log.info("-> maybe try MACH_GPU_BACKEND=opengl ?", .{});
std.process.exit(1);
}
// Print which adapter we are going to use.
var props = std.mem.zeroes(gpu.Adapter.Properties);
response.adapter.?.getProperties(&props);
if (props.backend_type == .null) {
log.err("no backend found for {s} adapter", .{props.adapter_type.name()});
std.process.exit(1);
}
log.info("found {s} backend on {s} adapter: {s}, {s}\n", .{
props.backend_type.name(),
props.adapter_type.name(),
props.name,
props.driver_description,
});
state.adapter = response.adapter.?;
// Create a device with default limits/features.
state.device = response.adapter.?.createDevice(&.{
.required_features_count = if (options.required_features) |v| @as(u32, @intCast(v.len)) else 0,
.required_features = if (options.required_features) |v| @as(?[*]const gpu.FeatureName, v.ptr) else null,
.required_limits = if (options.required_limits) |limits| @as(?*const gpu.RequiredLimits, &gpu.RequiredLimits{
.limits = limits,
}) else null,
.device_lost_callback = &deviceLostCallback,
.device_lost_userdata = null,
}) orelse {
log.err("failed to create GPU device\n", .{});
std.process.exit(1);
};
state.device.setUncapturedErrorCallback({}, printUnhandledErrorCallback);
state.queue = state.device.getQueue();
state.descriptor = gpu.SwapChain.Descriptor{
.label = "main swap chain",
.usage = options.swap_chain_usage,
.format = .bgra8_unorm,
.width = @intCast(state.platform.size.width),
.height = @intCast(state.platform.size.height),
.present_mode = .mailbox,
};
state.swap_chain = state.device.createSwapChain(state.surface, &state.descriptor);
// TODO(important): update this information upon framebuffer resize events
try core.set(state.main_window, .framebuffer_format, state.descriptor.format);
try core.set(state.main_window, .framebuffer_width, state.descriptor.width);
try core.set(state.main_window, .framebuffer_height, state.descriptor.height);
try core.set(state.main_window, .width, state.platform.size.width);
try core.set(state.main_window, .height, state.platform.size.height);
state.frame = .{ .target = 0 };
state.input = .{ .target = 1 };
try state.frame.start();
try state.input.start();
}
pub fn start(core: *Mod) !void {
if (core.state().on_tick == null) @panic("core.state().on_tick callback system must be registered");
if (core.state().on_exit == null) @panic("core.state().on_exit callback system must be registered");
// Signal that mach.Core has started.
core.schedule(.started);
// Schedule the next app tick to run.
core.scheduleAny(core.state().on_tick.?);
// If the user doesn't want mach.Core to take control of the main loop, we bail out - the next
// app tick is already scheduled to run in the future and they'll .present_frame to return
// control to us later.
if (non_blocking) {
if (!supports_non_blocking) std.debug.panic(
"mach.Core: platform {s} does not support non_blocking=true mode.",
.{@tagName(build_options.core_platform)},
);
return;
}
// The user wants mach.Core to take control of the main loop.
// TODO: we already have stack space since we are an executing system, so in theory we could
// deduplicate this allocation and just use 'our current stack space' - but accessing it from
// the dispatcher is tricky.
const stack_space = try core.state().allocator.alloc(u8, 8 * 1024 * 1024);
if (supports_non_blocking) {
while (core.state().state != .exited) {
dispatch(stack_space);
}
// Don't return, because Platform.run wouldn't either (marked noreturn due to underlying
// platform APIs never returning.)
std.process.exit(0);
} else {
// Platform drives the main loop.
Platform.run(platform_update_callback, .{ &mach.mods.mod.mach_core, stack_space });
// Platform.run should be marked noreturn, so this shouldn't ever run. But just in case we
// accidentally introduce a different Platform.run in the future, we put an exit here for
// good measure.
std.process.exit(0);
}
}
fn dispatch(stack_space: []u8) void {
mach.mods.dispatchUntil(stack_space, .mach_core, .frame_finished) catch {
@panic("Dispatch in Core failed");
};
}
fn platform_update_callback(core: *Mod, stack_space: []u8) !bool {
// Execute systems until .mach_core.frame_finished is dispatched, signalling a frame was
// finished.
try mach.mods.dispatchUntil(stack_space, .mach_core, .frame_finished);
return core.state().state != .exited;
}
pub fn deinit(entities: *mach.Entities.Mod, core: *Mod) !void {
const state = core.state();
state.state = .exited;
var q = try entities.query(.{
.titles = Mod.read(.title),
});
while (q.next()) |v| {
for (v.titles) |title| {
state.allocator.free(title);
}
}
// GPU backend (ie. d3d12, metal, opengl, vulkan)
//
// Must be done BEFORE platform deinit.
// Otherwise, we enter a race condition where GPU might try to present
// to the window server.
state.swap_chain.release();
state.queue.release();
state.device.release();
state.surface.release();
state.adapter.release();
state.instance.release();
// Platform (ie. Windows, MacOS, Linux X11 or Wayland)
state.platform.deinit();
state.events.deinit();
}
/// Returns the next event until there are no more available. You should check for events during
/// every on_tick()
pub inline fn nextEvent(core: *@This()) ?Event {
return core.events.readItem();
}
/// Push an event onto the event queue, or set OOM if no space is available.
///
/// Updates the input_state tracker.
pub inline fn pushEvent(core: *@This(), event: Event) void {
// Write event
core.events.writeItem(event) catch {
core.oom.set();
return;
};
// Update input state
switch (event) {
.key_press => |ev| core.input_state.keys.setValue(@intFromEnum(ev.key), true),
.key_release => |ev| core.input_state.keys.setValue(@intFromEnum(ev.key), false),
.mouse_press => |ev| core.input_state.mouse_buttons.setValue(@intFromEnum(ev.button), true),
.mouse_release => |ev| core.input_state.mouse_buttons.setValue(@intFromEnum(ev.button), false),
.mouse_motion => |ev| core.input_state.mouse_position = ev.pos,
.focus_lost => {
// Clear input state that may be 'stuck' when focus is regained.
core.input_state.keys = InputState.KeyBitSet.initEmpty();
core.input_state.mouse_buttons = InputState.MouseButtonSet.initEmpty();
},
else => {},
}
}
/// Reports whether mach.Core ran out of memory, indicating events may have been dropped.
///
/// Once called, the OOM flag is reset and mach.Core will continue operating normally.
pub fn outOfMemory(core: *@This()) bool {
if (!core.oom.isSet()) return false;
core.oom.reset();
return true;
}
/// Sets the window title. The string must be owned by Core, and will not be copied or freed. It is
/// advised to use the `core.title` buffer for this purpose, e.g.:
///
/// ```
/// const title = try std.fmt.bufPrintZ(&core.title, "Hello, world!", .{});
/// core.setTitle(title);
/// ```
pub inline fn setTitle(core: *@This(), value: [:0]const u8) void {
return core.platform.setTitle(value);
}
/// Set the window mode
pub inline fn setDisplayMode(core: *@This(), mode: DisplayMode) void {
return core.platform.setDisplayMode(mode);
}
/// Returns the window mode
pub inline fn displayMode(core: *@This()) DisplayMode {
return core.platform.display_mode;
}
pub inline fn setBorder(core: *@This(), value: bool) void {
return core.platform.setBorder(value);
}
pub inline fn border(core: *@This()) bool {
return core.platform.border;
}
pub inline fn setHeadless(core: *@This(), value: bool) void {
return core.platform.setHeadless(value);
}
pub inline fn headless(core: *@This()) bool {
return core.platform.headless;
}
pub fn keyPressed(core: *@This(), key: Key) bool {
return core.input_state.isKeyPressed(key);
}
pub fn keyReleased(core: *@This(), key: Key) bool {
return core.input_state.isKeyReleased(key);
}
pub fn mousePressed(core: *@This(), button: MouseButton) bool {
return core.input_state.isMouseButtonPressed(button);
}
pub fn mouseReleased(core: *@This(), button: MouseButton) bool {
return core.input_state.isMouseButtonReleased(button);
}
pub fn mousePosition(core: *@This()) Position {
return core.input_state.mouse_position;
}
/// Set refresh rate synchronization mode. Default `.triple`
///
/// Calling this function also implicitly calls setFrameRateLimit for you:
/// ```
/// .none => setFrameRateLimit(0) // unlimited
/// .double => setFrameRateLimit(0) // unlimited
/// .triple => setFrameRateLimit(2 * max_monitor_refresh_rate)
/// ```
pub inline fn setVSync(core: *@This(), mode: VSyncMode) void {
return core.platform.setVSync(mode);
}
/// Returns refresh rate synchronization mode.
pub inline fn vsync(core: *@This()) VSyncMode {
return core.platform.vsync_mode;
}
/// Sets the frame rate limit. Default 0 (unlimited)
///
/// This is applied *in addition* to the vsync mode.
pub inline fn setFrameRateLimit(core: *@This(), limit: u32) void {
core.frame.target = limit;
}
/// Returns the frame rate limit, or zero if unlimited.
pub inline fn frameRateLimit(core: *@This()) u32 {
return core.frame.target;
}
/// Set the window size, in subpixel units.
pub inline fn setSize(core: *@This(), value: Size) void {
return core.platform.setSize(value);
}
/// Returns the window size, in subpixel units.
pub inline fn size(core: *@This()) Size {
return core.platform.size;
}
pub inline fn setCursorMode(core: *@This(), mode: CursorMode) void {
return core.platform.setCursorMode(mode);
}
pub inline fn cursorMode(core: *@This()) CursorMode {
return core.platform.cursorMode();
}
pub inline fn setCursorShape(core: *@This(), cursor: CursorShape) void {
return core.platform.setCursorShape(cursor);
}
pub inline fn cursorShape(core: *@This()) CursorShape {
return core.platform.cursorShape();
}
/// Sets the minimum target frequency of the input handling thread.
///
/// Input handling (the main thread) runs at a variable frequency. The thread blocks until there are
/// input events available, or until it needs to unblock in order to achieve the minimum target
/// frequency which is your collaboration point of opportunity with the main thread.
///
/// For example, by default (`setInputFrequency(1)`) mach-core will aim to invoke `updateMainThread`
/// at least once per second (but potentially much more, e.g. once per every mouse movement or
/// keyboard button press.) If you were to increase the input frequency to say 60hz e.g.
/// `setInputFrequency(60)` then mach-core will aim to invoke your `updateMainThread` 60 times per
/// second.
///
/// An input frequency of zero implies unlimited, in which case the main thread will busy-wait.
///
/// # Multithreaded mach-core behavior
///
/// On some platforms, mach-core is able to handle input and rendering independently for
/// improved performance and responsiveness.
///
/// | Platform | Threading |
/// |----------|-----------------|
/// | Desktop | Multi threaded |
/// | Browser | Single threaded |
/// | Mobile | TBD |
///
/// On single-threaded platforms, `update` and the (optional) `updateMainThread` callback are
/// invoked in sequence, one after the other, on the same thread.
///
/// On multi-threaded platforms, `init` and `deinit` are called on the main thread, while `update`
/// is called on a separate rendering thread. The (optional) `updateMainThread` callback can be
/// used in cases where you must run a function on the main OS thread (such as to open a native
/// file dialog on macOS, since many system GUI APIs must be run on the main OS thread.) It is
/// advised you do not use this callback to run any code except when absolutely neccessary, as
/// it is in direct contention with input handling.
///
/// APIs which are not accessible from a specific thread are declared as such, otherwise can be
/// called from any thread as they are internally synchronized.
pub inline fn setInputFrequency(core: *@This(), input_frequency: u32) void {
core.input.target = input_frequency;
}
/// Returns the input frequency, or zero if unlimited (busy-waiting mode)
pub inline fn inputFrequency(core: *@This()) u32 {
return core.input.target;
}
/// Returns the actual number of frames rendered (`update` calls that returned) in the last second.
///
/// This is updated once per second.
pub inline fn frameRate(core: *@This()) u32 {
return core.frame.rate;
}
/// Returns the actual number of input thread iterations in the last second. See setInputFrequency
/// for what this means.
///
/// This is updated once per second.
pub inline fn inputRate(core: *@This()) u32 {
return core.input.rate;
}
/// Returns the underlying native NSWindow pointer
///
/// May only be called on macOS.
pub fn nativeWindowCocoa(core: *@This()) *anyopaque {
return core.platform.nativeWindowCocoa();
}
/// Returns the underlying native Windows' HWND pointer
///
/// May only be called on Windows.
pub fn nativeWindowWin32(core: *@This()) std.os.windows.HWND {
return core.platform.nativeWindowWin32();
}
fn presentFrame(core: *Mod, entities: *mach.Entities.Mod) !void {
const state: *@This() = core.state();
// Update windows title
var num_windows: usize = 0;
var q = try entities.query(.{
.ids = mach.Entities.Mod.read(.id),
.titles = Mod.read(.title),
});
while (q.next()) |v| {
for (v.ids, v.titles) |_, title| {
num_windows += 1;
state.platform.setTitle(title);
}
}
if (num_windows > 1) @panic("mach: Core currently only supports a single window");
_ = try state.platform.update();
mach.sysgpu.Impl.deviceTick(state.device);
state.swap_chain.present();
// Update swapchain for the next frame
if (state.swap_chain_update.isSet()) blk: {
state.swap_chain_update.reset();
switch (state.platform.vsync_mode) {
.triple => state.frame.target = 2 * state.platform.refresh_rate,
else => state.frame.target = 0,
}
if (state.platform.size.width == 0 or state.platform.size.height == 0) break :blk;
state.descriptor.present_mode = switch (state.platform.vsync_mode) {
.none => .immediate,
.double => .fifo,
.triple => .mailbox,
};
state.descriptor.width = @intCast(state.platform.size.width);
state.descriptor.height = @intCast(state.platform.size.height);
state.swap_chain.release();
state.swap_chain = state.device.createSwapChain(state.surface, &state.descriptor);
}
// TODO(important): update this information in response to resize events rather than
// after frame submission
try core.set(state.main_window, .framebuffer_format, state.descriptor.format);
try core.set(state.main_window, .framebuffer_width, state.descriptor.width);
try core.set(state.main_window, .framebuffer_height, state.descriptor.height);
try core.set(state.main_window, .width, state.platform.size.width);
try core.set(state.main_window, .height, state.platform.size.height);
// Signal that the frame was finished.
core.schedule(.frame_finished);
switch (core.state().state) {
.running => core.scheduleAny(core.state().on_tick.?),
.exiting => {
core.scheduleAny(core.state().on_exit.?);
core.state().state = .deinitializing;
},
.deinitializing => {},
.exited => @panic("application not running"),
}
// Record to frame rate frequency monitor that a frame was finished.
state.frame.tick();
}
/// Prints into the window title buffer using a format string and arguments. e.g.
///
/// ```
/// try core.state().printTitle(core_mod, core_mod.state().main_window, "Hello, {s}!", .{"Mach"});
/// ```
pub fn printTitle(
core: *@This(),
window_id: mach.EntityID,
comptime fmt: []const u8,
args: anytype,
) !void {
_ = window_id;
// Allocate and assign a new window title slice.
const slice = try std.fmt.allocPrintZ(core.allocator, fmt, args);
defer core.allocator.free(slice);
core.setTitle(slice);
// TODO: This function does not have access to *core.Mod to update
// try core.Mod.set(window_id, .title, slice);
}
fn exit(core: *Mod) void {
core.state().state = .exiting;
}
pub inline fn requestAdapterCallback(
context: *RequestAdapterResponse,
status: gpu.RequestAdapterStatus,
adapter: ?*gpu.Adapter,
message: ?[*:0]const u8,
) void {
context.* = RequestAdapterResponse{
.status = status,
.adapter = adapter,
.message = message,
};
}
// TODO(important): expose device loss to users, this can happen especially in the web and on mobile
// devices. Users will need to re-upload all assets to the GPU in this event.
fn deviceLostCallback(reason: gpu.Device.LostReason, msg: [*:0]const u8, userdata: ?*anyopaque) callconv(.C) void {
_ = userdata;
_ = reason;
log.err("mach: device lost: {s}", .{msg});
@panic("mach: device lost");
}
pub inline fn printUnhandledErrorCallback(_: void, ty: gpu.ErrorType, message: [*:0]const u8) void {
switch (ty) {
.validation => std.log.err("gpu: validation error: {s}\n", .{message}),
.out_of_memory => std.log.err("gpu: out of memory: {s}\n", .{message}),
.device_lost => std.log.err("gpu: device lost: {s}\n", .{message}),
.unknown => std.log.err("gpu: unknown error: {s}\n", .{message}),
else => unreachable,
}
std.process.exit(1);
}
pub fn detectBackendType(allocator: std.mem.Allocator) !gpu.BackendType {
const backend = std.process.getEnvVarOwned(
allocator,
"MACH_GPU_BACKEND",
) catch |err| switch (err) {
error.EnvironmentVariableNotFound => {
if (builtin.target.isDarwin()) return .metal;
if (builtin.target.os.tag == .windows) return .d3d12;
return .vulkan;
},
else => return err,
};
defer allocator.free(backend);
if (std.ascii.eqlIgnoreCase(backend, "null")) return .null;
if (std.ascii.eqlIgnoreCase(backend, "d3d11")) return .d3d11;
if (std.ascii.eqlIgnoreCase(backend, "d3d12")) return .d3d12;
if (std.ascii.eqlIgnoreCase(backend, "metal")) return .metal;
if (std.ascii.eqlIgnoreCase(backend, "vulkan")) return .vulkan;
if (std.ascii.eqlIgnoreCase(backend, "opengl")) return .opengl;
if (std.ascii.eqlIgnoreCase(backend, "opengles")) return .opengles;
@panic("unknown MACH_GPU_BACKEND type");
}
const Platform = switch (build_options.core_platform) {
.wasm => @panic("TODO: support mach.Core WASM platform"),
.windows => @import("core/Windows.zig"),
.linux => @import("core/Linux.zig"),
.darwin => @import("core/Darwin.zig"),
.null => @import("core/Null.zig"),
};
// TODO: this needs to be removed.
pub const InitOptions = struct {
allocator: std.mem.Allocator,
is_app: bool = false,
headless: bool = false,
display_mode: DisplayMode = .windowed,
border: bool = true,
title: [:0]const u8 = "Mach core",
size: Size = .{ .width = 1920 / 2, .height = 1080 / 2 },
power_preference: gpu.PowerPreference = .undefined,
required_features: ?[]const gpu.FeatureName = null,
required_limits: ?gpu.Limits = null,
swap_chain_usage: gpu.Texture.UsageFlags = .{
.render_attachment = true,
},
};
pub const InputState = struct {
const KeyBitSet = std.StaticBitSet(@as(u8, @intFromEnum(Key.max)) + 1);
const MouseButtonSet = std.StaticBitSet(@as(u4, @intFromEnum(MouseButton.max)) + 1);
keys: KeyBitSet = KeyBitSet.initEmpty(),
mouse_buttons: MouseButtonSet = MouseButtonSet.initEmpty(),
mouse_position: Position = .{ .x = 0, .y = 0 },
pub inline fn isKeyPressed(input: InputState, key: Key) bool {
return input.keys.isSet(@intFromEnum(key));
}
pub inline fn isKeyReleased(input: InputState, key: Key) bool {
return !input.isKeyPressed(key);
}
pub inline fn isMouseButtonPressed(input: InputState, button: MouseButton) bool {
return input.mouse_buttons.isSet(@intFromEnum(button));
}
pub inline fn isMouseButtonReleased(input: InputState, button: MouseButton) bool {
return !input.isMouseButtonPressed(button);
}
};
pub const Event = union(enum) {
key_press: KeyEvent,
key_repeat: KeyEvent,
key_release: KeyEvent,
char_input: struct {
codepoint: u21,
},
mouse_motion: struct {
pos: Position,
},
mouse_press: MouseButtonEvent,
mouse_release: MouseButtonEvent,
mouse_scroll: struct {
xoffset: f32,
yoffset: f32,
},
framebuffer_resize: Size,
focus_gained,
focus_lost,
close,
};
pub const KeyEvent = struct {
key: Key,
mods: KeyMods,
};
pub const MouseButtonEvent = struct {
button: MouseButton,
pos: Position,
mods: KeyMods,
};
pub const MouseButton = enum {
left,
right,
middle,
four,
five,
six,
seven,
eight,
pub const max = MouseButton.eight;
};
pub const Key = enum {
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p,
q,
r,
s,
t,
u,
v,
w,
x,
y,
z,
zero,
one,
two,
three,
four,
five,
six,
seven,
eight,
nine,
f1,
f2,
f3,
f4,
f5,
f6,
f7,
f8,
f9,
f10,
f11,
f12,
f13,
f14,
f15,
f16,
f17,
f18,
f19,
f20,
f21,
f22,
f23,
f24,
f25,
kp_divide,
kp_multiply,
kp_subtract,
kp_add,
kp_0,
kp_1,
kp_2,
kp_3,
kp_4,
kp_5,
kp_6,
kp_7,
kp_8,
kp_9,
kp_decimal,
kp_comma,
kp_equal,
kp_enter,
enter,
escape,
tab,
left_shift,
right_shift,
left_control,
right_control,
left_alt,
right_alt,
left_super,
right_super,
menu,
num_lock,
caps_lock,
print,
scroll_lock,
pause,
delete,
home,
end,
page_up,
page_down,
insert,
left,
right,
up,
down,
backspace,
space,
minus,
equal,
left_bracket,
right_bracket,
backslash,
semicolon,
apostrophe,
comma,
period,
slash,
grave,
iso_backslash,
international1,
international2,
international3,
international4,
international5,
lang1,
lang2,
unknown,
pub const max = Key.unknown;
};
pub const KeyMods = packed struct(u8) {
shift: bool,
control: bool,
alt: bool,
super: bool,
caps_lock: bool,
num_lock: bool,
_padding: u2 = 0,
};
pub const DisplayMode = enum {
/// Windowed mode.
windowed,
/// Fullscreen mode, using this option may change the display's video mode.
fullscreen,
/// Borderless fullscreen window.
///
/// Beware that true .fullscreen is also a hint to the OS that is used in various contexts, e.g.
///
/// * macOS: Moving to a virtual space dedicated to fullscreen windows as the user expects
/// * macOS: .borderless windows cannot prevent the system menu bar from being displayed
///
/// Always allow users to choose their preferred display mode.
borderless,
};
pub const VSyncMode = enum {
/// Potential screen tearing.
/// No synchronization with monitor, render frames as fast as possible.
///
/// Not available on WASM, fallback to double
none,
/// No tearing, synchronizes rendering with monitor refresh rate, rendering frames when ready.
///
/// Tries to stay one frame ahead of the monitor, so when it's ready for the next frame it is
/// already prepared.
double,
/// No tearing, synchronizes rendering with monitor refresh rate, rendering frames when ready.
///
/// Tries to stay two frames ahead of the monitor, so when it's ready for the next frame it is
/// already prepared.
///
/// Not available on WASM, fallback to double
triple,
};
pub const Size = struct {
width: u32,
height: u32,
pub inline fn eql(a: Size, b: Size) bool {
return a.width == b.width and a.height == b.height;
}
};
pub const CursorMode = enum {
/// Makes the cursor visible and behaving normally.
normal,
/// Makes the cursor invisible when it is over the content area of the window but does not
/// restrict it from leaving.
hidden,
/// Hides and grabs the cursor, providing virtual and unlimited cursor movement. This is useful
/// for implementing for example 3D camera controls.
disabled,
};
pub const CursorShape = enum {
arrow,
ibeam,
crosshair,
pointing_hand,
resize_ew,
resize_ns,
resize_nwse,
resize_nesw,
resize_all,
not_allowed,
};
pub const Position = struct {
x: f64,
y: f64,
};
pub const RequestAdapterResponse = struct {
status: gpu.RequestAdapterStatus,
adapter: ?*gpu.Adapter,
message: ?[*:0]const u8,
};
// Verifies that a platform implementation exposes the expected function declarations.
comptime {
// Core
assertHasField(Platform, "surface_descriptor");
assertHasField(Platform, "refresh_rate");
assertHasDecl(Platform, "init");
assertHasDecl(Platform, "deinit");
assertHasDecl(Platform, "setTitle");
assertHasDecl(Platform, "setDisplayMode");
assertHasField(Platform, "display_mode");
assertHasDecl(Platform, "setBorder");
assertHasField(Platform, "border");
assertHasDecl(Platform, "setHeadless");
assertHasField(Platform, "headless");
assertHasDecl(Platform, "setVSync");
assertHasField(Platform, "vsync_mode");
assertHasDecl(Platform, "setSize");
assertHasField(Platform, "size");
assertHasDecl(Platform, "setCursorMode");
assertHasField(Platform, "cursor_mode");
assertHasDecl(Platform, "setCursorShape");
assertHasField(Platform, "cursor_shape");
}
fn assertHasDecl(comptime T: anytype, comptime decl_name: []const u8) void {
if (!@hasDecl(T, decl_name)) @compileError(@typeName(T) ++ " missing declaration: " ++ decl_name);
}
fn assertHasField(comptime T: anytype, comptime field_name: []const u8) void {
if (!@hasField(T, field_name)) @compileError(@typeName(T) ++ " missing field: " ++ field_name);
}
test {
_ = Platform;
@import("std").testing.refAllDeclsRecursive(InitOptions);
@import("std").testing.refAllDeclsRecursive(VSyncMode);
@import("std").testing.refAllDeclsRecursive(Size);
@import("std").testing.refAllDeclsRecursive(Position);
@import("std").testing.refAllDeclsRecursive(Event);
@import("std").testing.refAllDeclsRecursive(KeyEvent);
@import("std").testing.refAllDeclsRecursive(MouseButtonEvent);
@import("std").testing.refAllDeclsRecursive(MouseButton);
@import("std").testing.refAllDeclsRecursive(Key);
@import("std").testing.refAllDeclsRecursive(KeyMods);
@import("std").testing.refAllDeclsRecursive(DisplayMode);
@import("std").testing.refAllDeclsRecursive(CursorMode);
@import("std").testing.refAllDeclsRecursive(CursorShape);
}