732 lines
29 KiB
Zig
732 lines
29 KiB
Zig
const std = @import("std");
|
|
|
|
const mach = @import("../main.zig");
|
|
const testing = mach.testing;
|
|
const math = mach.math;
|
|
const vec = @import("vec.zig");
|
|
|
|
pub fn Mat(
|
|
comptime n_cols: usize,
|
|
comptime n_rows: usize,
|
|
comptime Vector: type,
|
|
) type {
|
|
return extern struct {
|
|
/// The column vectors of the matrix.
|
|
///
|
|
/// Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
|
|
/// The translation vector is stored in contiguous memory elements 12, 13, 14:
|
|
///
|
|
/// ```
|
|
/// [4]Vec4{
|
|
/// vec4( 1, 0, 0, 0),
|
|
/// vec4( 0, 1, 0, 0),
|
|
/// vec4( 0, 0, 1, 0),
|
|
/// vec4(tx, ty, tz, tw),
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Use the init() constructor to write code which visually matches the same layout as you'd
|
|
/// see used in scientific / maths communities.
|
|
v: [cols]Vec,
|
|
|
|
/// The number of columns, e.g. Mat3x4.cols == 3
|
|
pub const cols = n_cols;
|
|
|
|
/// The number of rows, e.g. Mat3x4.rows == 4
|
|
pub const rows = n_rows;
|
|
|
|
/// The scalar type of this matrix, e.g. Mat3x3.T == f32
|
|
pub const T = Vector.T;
|
|
|
|
/// The underlying Vec type, e.g. Mat3x3.Vec == Vec3
|
|
pub const Vec = Vector;
|
|
|
|
/// The Vec type corresponding to the number of rows, e.g. Mat3x3.RowVec == Vec3
|
|
pub const RowVec = vec.Vec(rows, T);
|
|
|
|
/// The Vec type corresponding to the numebr of cols, e.g. Mat3x4.ColVec = Vec4
|
|
pub const ColVec = vec.Vec(cols, T);
|
|
|
|
const Matrix = @This();
|
|
|
|
/// Identity matrix
|
|
pub const ident = switch (Matrix) {
|
|
inline math.Mat3x3, math.Mat3x3h, math.Mat3x3d => Matrix.init(
|
|
&RowVec.init(1, 0, 0),
|
|
&RowVec.init(0, 1, 0),
|
|
&RowVec.init(0, 0, 1),
|
|
),
|
|
inline math.Mat4x4, math.Mat4x4h, math.Mat4x4d => Matrix.init(
|
|
&Vec.init(1, 0, 0, 0),
|
|
&Vec.init(0, 1, 0, 0),
|
|
&Vec.init(0, 0, 1, 0),
|
|
&Vec.init(0, 0, 0, 1),
|
|
),
|
|
else => @compileError("Expected Mat3x3, Mat4x4 found '" ++ @typeName(Matrix) ++ "'"),
|
|
};
|
|
|
|
pub usingnamespace switch (Matrix) {
|
|
inline math.Mat3x3, math.Mat3x3h, math.Mat3x3d => struct {
|
|
/// Constructs a 3x3 matrix with the given rows. For example to write a translation
|
|
/// matrix like in the left part of this equation:
|
|
///
|
|
/// ```
|
|
/// |1 0 tx| |x | |x+z*tx|
|
|
/// |0 1 ty| |y | = |y+z*ty|
|
|
/// |0 0 tz| |z=1| |tz |
|
|
/// ```
|
|
///
|
|
/// You would write it with the same visual layout:
|
|
///
|
|
/// ```
|
|
/// const m = Mat3x3.init(
|
|
/// vec3(1, 0, tx),
|
|
/// vec3(0, 1, ty),
|
|
/// vec3(0, 0, tz),
|
|
/// );
|
|
/// ```
|
|
///
|
|
/// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
|
|
pub inline fn init(r0: *const RowVec, r1: *const RowVec, r2: *const RowVec) Matrix {
|
|
return .{ .v = [_]Vec{
|
|
Vec.init(r0.x(), r1.x(), r2.x()),
|
|
Vec.init(r0.y(), r1.y(), r2.y()),
|
|
Vec.init(r0.z(), r1.z(), r2.z()),
|
|
} };
|
|
}
|
|
|
|
/// Returns the row `i` of the matrix.
|
|
pub inline fn row(m: *const Matrix, i: usize) RowVec {
|
|
// Note: we inline RowVec.init manually here as it is faster in debug builds.
|
|
// return RowVec.init(m.v[0].v[i], m.v[1].v[i], m.v[2].v[i]);
|
|
return .{ .v = .{ m.v[0].v[i], m.v[1].v[i], m.v[2].v[i] } };
|
|
}
|
|
|
|
/// Returns the column `i` of the matrix.
|
|
pub inline fn col(m: *const Matrix, i: usize) RowVec {
|
|
// Note: we inline RowVec.init manually here as it is faster in debug builds.
|
|
// return RowVec.init(m.v[i].v[0], m.v[i].v[1], m.v[i].v[2]);
|
|
return .{ .v = .{ m.v[i].v[0], m.v[i].v[1], m.v[i].v[2] } };
|
|
}
|
|
|
|
/// Transposes the matrix.
|
|
pub inline fn transpose(m: *const Matrix) Matrix {
|
|
return .{ .v = [_]Vec{
|
|
Vec.init(m.v[0].v[0], m.v[1].v[0], m.v[2].v[0]),
|
|
Vec.init(m.v[0].v[1], m.v[1].v[1], m.v[2].v[1]),
|
|
Vec.init(m.v[0].v[2], m.v[1].v[2], m.v[2].v[2]),
|
|
} };
|
|
}
|
|
|
|
/// Constructs a 2D matrix which scales each dimension by the given vector.
|
|
pub inline fn scale(s: math.Vec2) Matrix {
|
|
return init(
|
|
&RowVec.init(s.x(), 0, 0),
|
|
&RowVec.init(0, s.y(), 0),
|
|
&RowVec.init(0, 0, 1),
|
|
);
|
|
}
|
|
|
|
/// Constructs a 2D matrix which scales each dimension by the given scalar.
|
|
pub inline fn scaleScalar(t: Vec.T) Matrix {
|
|
return scale(math.Vec2.splat(t));
|
|
}
|
|
|
|
/// Constructs a 2D matrix which translates coordinates by the given vector.
|
|
pub inline fn translate(t: math.Vec2) Matrix {
|
|
return init(
|
|
&RowVec.init(1, 0, t.x()),
|
|
&RowVec.init(0, 1, t.y()),
|
|
&RowVec.init(0, 0, 1),
|
|
);
|
|
}
|
|
|
|
/// Constructs a 2D matrix which translates coordinates by the given scalar.
|
|
pub inline fn translateScalar(t: Vec.T) Matrix {
|
|
return translate(math.Vec2.splat(t));
|
|
}
|
|
|
|
/// Returns the translation component of the matrix.
|
|
pub inline fn translation(t: Matrix) math.Vec2 {
|
|
return math.Vec2.init(t.v[2].x(), t.v[2].y());
|
|
}
|
|
},
|
|
inline math.Mat4x4, math.Mat4x4h, math.Mat4x4d => struct {
|
|
/// Constructs a 4x4 matrix with the given rows. For example to write a translation
|
|
/// matrix like in the left part of this equation:
|
|
///
|
|
/// ```
|
|
/// |1 0 0 tx| |x | |x+w*tx|
|
|
/// |0 1 0 ty| |y | = |y+w*ty|
|
|
/// |0 0 1 tz| |z | |z+w*tz|
|
|
/// |0 0 0 tw| |w=1| |tw |
|
|
/// ```
|
|
///
|
|
/// You would write it with the same visual layout:
|
|
///
|
|
/// ```
|
|
/// const m = Mat4x4.init(
|
|
/// &vec4(1, 0, 0, tx),
|
|
/// &vec4(0, 1, 0, ty),
|
|
/// &vec4(0, 0, 1, tz),
|
|
/// &vec4(0, 0, 0, tw),
|
|
/// );
|
|
/// ```
|
|
///
|
|
/// Note that Mach matrices use [column-major storage and column-vectors](https://machengine.org/engine/math/matrix-storage/).
|
|
pub inline fn init(r0: *const RowVec, r1: *const RowVec, r2: *const RowVec, r3: *const RowVec) Matrix {
|
|
return .{ .v = [_]Vec{
|
|
Vec.init(r0.x(), r1.x(), r2.x(), r3.x()),
|
|
Vec.init(r0.y(), r1.y(), r2.y(), r3.y()),
|
|
Vec.init(r0.z(), r1.z(), r2.z(), r3.z()),
|
|
Vec.init(r0.w(), r1.w(), r2.w(), r3.w()),
|
|
} };
|
|
}
|
|
|
|
/// Returns the row `i` of the matrix.
|
|
pub inline fn row(m: *const Matrix, i: usize) RowVec {
|
|
return RowVec{ .v = RowVec.Vector{ m.v[0].v[i], m.v[1].v[i], m.v[2].v[i], m.v[3].v[i] } };
|
|
}
|
|
|
|
/// Returns the column `i` of the matrix.
|
|
pub inline fn col(m: *const Matrix, i: usize) RowVec {
|
|
return RowVec{ .v = RowVec.Vector{ m.v[i].v[0], m.v[i].v[1], m.v[i].v[2], m.v[i].v[3] } };
|
|
}
|
|
|
|
/// Transposes the matrix.
|
|
pub inline fn transpose(m: *const Matrix) Matrix {
|
|
return .{ .v = [_]Vec{
|
|
Vec.init(m.v[0].v[0], m.v[1].v[0], m.v[2].v[0], m.v[3].v[0]),
|
|
Vec.init(m.v[0].v[1], m.v[1].v[1], m.v[2].v[1], m.v[3].v[1]),
|
|
Vec.init(m.v[0].v[2], m.v[1].v[2], m.v[2].v[2], m.v[3].v[2]),
|
|
Vec.init(m.v[0].v[3], m.v[1].v[3], m.v[2].v[3], m.v[3].v[3]),
|
|
} };
|
|
}
|
|
|
|
/// Constructs a 3D matrix which scales each dimension by the given vector.
|
|
pub inline fn scale(s: math.Vec3) Matrix {
|
|
return init(
|
|
&RowVec.init(s.x(), 0, 0, 0),
|
|
&RowVec.init(0, s.y(), 0, 0),
|
|
&RowVec.init(0, 0, s.z(), 0),
|
|
&RowVec.init(0, 0, 0, 1),
|
|
);
|
|
}
|
|
|
|
/// Constructs a 3D matrix which scales each dimension by the given scalar.
|
|
pub inline fn scaleScalar(s: Vec.T) Matrix {
|
|
return scale(math.Vec3.splat(s));
|
|
}
|
|
|
|
/// Constructs a 3D matrix which translates coordinates by the given vector.
|
|
pub inline fn translate(t: math.Vec3) Matrix {
|
|
return init(
|
|
&RowVec.init(1, 0, 0, t.x()),
|
|
&RowVec.init(0, 1, 0, t.y()),
|
|
&RowVec.init(0, 0, 1, t.z()),
|
|
&RowVec.init(0, 0, 0, 1),
|
|
);
|
|
}
|
|
|
|
/// Constructs a 3D matrix which translates coordinates by the given scalar.
|
|
pub inline fn translateScalar(t: Vec.T) Matrix {
|
|
return translate(math.Vec3.splat(t));
|
|
}
|
|
|
|
/// Returns the translation component of the matrix.
|
|
pub inline fn translation(t: *const Matrix) math.Vec3 {
|
|
return math.Vec3.init(t.v[3].x(), t.v[3].y(), t.v[3].z());
|
|
}
|
|
|
|
/// Constructs a 3D matrix which rotates around the X axis by `angle_radians`.
|
|
pub inline fn rotateX(angle_radians: f32) Matrix {
|
|
const c = std.math.cos(angle_radians);
|
|
const s = std.math.sin(angle_radians);
|
|
return Matrix.init(
|
|
&RowVec.init(1, 0, 0, 0),
|
|
&RowVec.init(0, c, -s, 0),
|
|
&RowVec.init(0, s, c, 0),
|
|
&RowVec.init(0, 0, 0, 1),
|
|
);
|
|
}
|
|
|
|
/// Constructs a 3D matrix which rotates around the X axis by `angle_radians`.
|
|
pub inline fn rotateY(angle_radians: f32) Matrix {
|
|
const c = std.math.cos(angle_radians);
|
|
const s = std.math.sin(angle_radians);
|
|
return Matrix.init(
|
|
&RowVec.init(c, 0, s, 0),
|
|
&RowVec.init(0, 1, 0, 0),
|
|
&RowVec.init(-s, 0, c, 0),
|
|
&RowVec.init(0, 0, 0, 1),
|
|
);
|
|
}
|
|
|
|
/// Constructs a 3D matrix which rotates around the Z axis by `angle_radians`.
|
|
pub inline fn rotateZ(angle_radians: f32) Matrix {
|
|
const c = std.math.cos(angle_radians);
|
|
const s = std.math.sin(angle_radians);
|
|
return Matrix.init(
|
|
&RowVec.init(c, -s, 0, 0),
|
|
&RowVec.init(s, c, 0, 0),
|
|
&RowVec.init(0, 0, 1, 0),
|
|
&RowVec.init(0, 0, 0, 1),
|
|
);
|
|
}
|
|
|
|
/// Constructs an orthographic projection matrix; an orthogonal transformation matrix
|
|
/// which transforms from the given left, right, bottom, and top dimensions into
|
|
/// `(-1, +1)` in `(x, y)`, and `(0, +1)` in `z`.
|
|
///
|
|
/// The near/far parameters denotes the depth (z coordinate) of the near/far clipping
|
|
/// plane.
|
|
///
|
|
/// Returns an orthographic projection matrix.
|
|
// TODO: needs tests
|
|
pub inline fn ortho(
|
|
/// The sides of the near clipping plane viewport
|
|
left: f32,
|
|
right: f32,
|
|
bottom: f32,
|
|
top: f32,
|
|
/// The depth (z coordinate) of the near/far clipping plane.
|
|
near: f32,
|
|
far: f32,
|
|
) Matrix {
|
|
const xx = 2 / (right - left);
|
|
const yy = 2 / (top - bottom);
|
|
const zz = 1 / (near - far);
|
|
const tx = (right + left) / (left - right);
|
|
const ty = (top + bottom) / (bottom - top);
|
|
const tz = near / (near - far);
|
|
return init(
|
|
&RowVec.init(xx, 0, 0, tx),
|
|
&RowVec.init(0, yy, 0, ty),
|
|
&RowVec.init(0, 0, zz, tz),
|
|
&RowVec.init(0, 0, 0, 1),
|
|
);
|
|
}
|
|
|
|
/// Constructs a perspective projection matrix; a perspective transformation matrix
|
|
/// which transforms from eye space to clip space.
|
|
///
|
|
/// The field of view angle `fovy` is the vertical angle in radians.
|
|
/// The `aspect` ratio is the ratio of the width to the height of the viewport.
|
|
/// The `near` and `far` parameters denote the depth (z coordinate) of the near and far clipping planes.
|
|
///
|
|
/// Returns a perspective projection matrix.
|
|
pub inline fn perspective(
|
|
/// The field of view angle in the y direction, in radians.
|
|
fovy: f32,
|
|
/// The aspect ratio of the viewport's width to its height.
|
|
aspect: f32,
|
|
/// The depth (z coordinate) of the near clipping plane.
|
|
near: f32,
|
|
/// The depth (z coordinate) of the far clipping plane.
|
|
far: f32,
|
|
) Matrix {
|
|
const f = 1.0 / std.math.tan(fovy / 2.0);
|
|
const zz = (near + far) / (near - far);
|
|
const zw = (2.0 * near * far) / (near - far);
|
|
return init(
|
|
&RowVec.init(f / aspect, 0, 0, 0),
|
|
&RowVec.init(0, f, 0, 0),
|
|
&RowVec.init(0, 0, zz, -1),
|
|
&RowVec.init(0, 0, zw, 0),
|
|
);
|
|
}
|
|
},
|
|
else => @compileError("Expected Mat3x3, Mat4x4 found '" ++ @typeName(Matrix) ++ "'"),
|
|
};
|
|
|
|
/// Matrix multiplication a*b
|
|
pub inline fn mul(a: *const Matrix, b: *const Matrix) Matrix {
|
|
@setEvalBranchQuota(10000);
|
|
var result: Matrix = undefined;
|
|
inline for (0..Matrix.rows) |row| {
|
|
inline for (0..Matrix.cols) |col| {
|
|
var sum: RowVec.T = 0.0;
|
|
inline for (0..RowVec.n) |i| {
|
|
// Note: we directly access rows/columns below as it is much faster **in
|
|
// debug builds**, instead of using these helpers:
|
|
//
|
|
// sum += a.row(row).mul(&b.col(col)).v[i];
|
|
sum += a.v[i].v[row] * b.v[col].v[i];
|
|
}
|
|
result.v[col].v[row] = sum;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Matrix * Vector multiplication
|
|
pub inline fn mulVec(matrix: *const Matrix, vector: *const ColVec) ColVec {
|
|
var result = [_]ColVec.T{0} ** ColVec.n;
|
|
inline for (0..Matrix.rows) |row| {
|
|
inline for (0..ColVec.n) |i| {
|
|
result[i] += matrix.v[row].v[i] * vector.v[row];
|
|
}
|
|
}
|
|
return vec.Vec(ColVec.n, ColVec.T){ .v = result };
|
|
}
|
|
|
|
// TODO: the below code was correct in our old implementation, it just needs to be updated
|
|
// to work with this new Mat approach, swapping f32 for the generic T float type, moving 3x3
|
|
// and 4x4 specific functions into the mixin above, writing new tests, etc.
|
|
|
|
// /// Check if two matrices are approximate equal. Returns true if the absolute difference between
|
|
// /// each element in matrix them is less or equal than the specified tolerance.
|
|
// pub inline fn equals(a: anytype, b: @TypeOf(a), tolerance: f32) bool {
|
|
// // TODO: leverage a vec.equals function
|
|
// return if (@TypeOf(a) == Mat3x3) {
|
|
// return float.equals(f32, a[0][0], b[0][0], tolerance) and
|
|
// float.equals(f32, a[0][1], b[0][1], tolerance) and
|
|
// float.equals(f32, a[0][2], b[0][2], tolerance) and
|
|
// float.equals(f32, a[0][3], b[0][3], tolerance) and
|
|
// float.equals(f32, a[1][0], b[1][0], tolerance) and
|
|
// float.equals(f32, a[1][1], b[1][1], tolerance) and
|
|
// float.equals(f32, a[1][2], b[1][2], tolerance) and
|
|
// float.equals(f32, a[1][3], b[1][3], tolerance) and
|
|
// float.equals(f32, a[2][0], b[2][0], tolerance) and
|
|
// float.equals(f32, a[2][1], b[2][1], tolerance) and
|
|
// float.equals(f32, a[2][2], b[2][2], tolerance) and
|
|
// float.equals(f32, a[2][3], b[2][3], tolerance);
|
|
// } else if (@TypeOf(a) == Mat4x4) {
|
|
// return float.equals(f32, a[0][0], b[0][0], tolerance) and
|
|
// float.equals(f32, a[0][1], b[0][1], tolerance) and
|
|
// float.equals(f32, a[0][2], b[0][2], tolerance) and
|
|
// float.equals(f32, a[0][3], b[0][3], tolerance) and
|
|
// float.equals(f32, a[1][0], b[1][0], tolerance) and
|
|
// float.equals(f32, a[1][1], b[1][1], tolerance) and
|
|
// float.equals(f32, a[1][2], b[1][2], tolerance) and
|
|
// float.equals(f32, a[1][3], b[1][3], tolerance) and
|
|
// float.equals(f32, a[2][0], b[2][0], tolerance) and
|
|
// float.equals(f32, a[2][1], b[2][1], tolerance) and
|
|
// float.equals(f32, a[2][2], b[2][2], tolerance) and
|
|
// float.equals(f32, a[2][3], b[2][3], tolerance) and
|
|
// float.equals(f32, a[3][0], b[3][0], tolerance) and
|
|
// float.equals(f32, a[3][1], b[3][1], tolerance) and
|
|
// float.equals(f32, a[3][2], b[3][2], tolerance) and
|
|
// float.equals(f32, a[3][3], b[3][3], tolerance);
|
|
// } else @compileError("Expected matrix, found '" ++ @typeName(@TypeOf(a)) ++ "'");
|
|
// }
|
|
};
|
|
}
|
|
|
|
test "gpu_compatibility" {
|
|
// https://www.w3.org/TR/WGSL/#alignment-and-size
|
|
try testing.expect(usize, 48).eql(@sizeOf(math.Mat3x3));
|
|
try testing.expect(usize, 64).eql(@sizeOf(math.Mat4x4));
|
|
|
|
try testing.expect(usize, 24).eql(@sizeOf(math.Mat3x3h));
|
|
try testing.expect(usize, 32).eql(@sizeOf(math.Mat4x4h));
|
|
|
|
try testing.expect(usize, 48 * 2).eql(@sizeOf(math.Mat3x3d)); // speculative
|
|
try testing.expect(usize, 64 * 2).eql(@sizeOf(math.Mat4x4d)); // speculative
|
|
}
|
|
|
|
test "zero_struct_overhead" {
|
|
// Proof that using e.g. [3]Vec4 is equal to [3]@Vector(4, f32)
|
|
try testing.expect(usize, @alignOf([3]@Vector(4, f32))).eql(@alignOf(math.Mat3x3));
|
|
try testing.expect(usize, @alignOf([4]@Vector(4, f32))).eql(@alignOf(math.Mat4x4));
|
|
try testing.expect(usize, @sizeOf([3]@Vector(4, f32))).eql(@sizeOf(math.Mat3x3));
|
|
try testing.expect(usize, @sizeOf([4]@Vector(4, f32))).eql(@sizeOf(math.Mat4x4));
|
|
}
|
|
|
|
test "n" {
|
|
try testing.expect(usize, 3).eql(math.Mat3x3.cols);
|
|
try testing.expect(usize, 3).eql(math.Mat3x3.rows);
|
|
try testing.expect(type, math.Vec3).eql(math.Mat3x3.Vec);
|
|
try testing.expect(usize, 3).eql(math.Mat3x3.Vec.n);
|
|
}
|
|
|
|
test "init" {
|
|
try testing.expect(math.Mat3x3, math.mat3x3(
|
|
&math.vec3(1, 0, 1337),
|
|
&math.vec3(0, 1, 7331),
|
|
&math.vec3(0, 0, 1),
|
|
)).eql(math.Mat3x3{
|
|
.v = [_]math.Vec3{
|
|
math.Vec3.init(1, 0, 0),
|
|
math.Vec3.init(0, 1, 0),
|
|
math.Vec3.init(1337, 7331, 1),
|
|
},
|
|
});
|
|
}
|
|
|
|
test "mat3x3_ident" {
|
|
try testing.expect(math.Mat3x3, math.Mat3x3.ident).eql(math.Mat3x3{
|
|
.v = [_]math.Vec3{
|
|
math.Vec3.init(1, 0, 0),
|
|
math.Vec3.init(0, 1, 0),
|
|
math.Vec3.init(0, 0, 1),
|
|
},
|
|
});
|
|
}
|
|
|
|
test "mat4x4_ident" {
|
|
try testing.expect(math.Mat4x4, math.Mat4x4.ident).eql(math.Mat4x4{
|
|
.v = [_]math.Vec4{
|
|
math.Vec4.init(1, 0, 0, 0),
|
|
math.Vec4.init(0, 1, 0, 0),
|
|
math.Vec4.init(0, 0, 1, 0),
|
|
math.Vec4.init(0, 0, 0, 1),
|
|
},
|
|
});
|
|
}
|
|
|
|
test "Mat3x3_row" {
|
|
const m = math.Mat3x3.init(
|
|
&math.vec3(0, 1, 2),
|
|
&math.vec3(3, 4, 5),
|
|
&math.vec3(6, 7, 8),
|
|
);
|
|
try testing.expect(math.Vec3, math.vec3(0, 1, 2)).eql(m.row(0));
|
|
try testing.expect(math.Vec3, math.vec3(3, 4, 5)).eql(m.row(1));
|
|
try testing.expect(math.Vec3, math.vec3(6, 7, 8)).eql(m.row(@TypeOf(m).rows - 1));
|
|
}
|
|
|
|
test "Mat3x3_col" {
|
|
const m = math.Mat3x3.init(
|
|
&math.vec3(0, 1, 2),
|
|
&math.vec3(3, 4, 5),
|
|
&math.vec3(6, 7, 8),
|
|
);
|
|
try testing.expect(math.Vec3, math.vec3(0, 3, 6)).eql(m.col(0));
|
|
try testing.expect(math.Vec3, math.vec3(1, 4, 7)).eql(m.col(1));
|
|
try testing.expect(math.Vec3, math.vec3(2, 5, 8)).eql(m.col(@TypeOf(m).cols - 1));
|
|
}
|
|
|
|
test "Mat4x4_row" {
|
|
const m = math.Mat4x4.init(
|
|
&math.vec4(0, 1, 2, 3),
|
|
&math.vec4(4, 5, 6, 7),
|
|
&math.vec4(8, 9, 10, 11),
|
|
&math.vec4(12, 13, 14, 15),
|
|
);
|
|
try testing.expect(math.Vec4, math.vec4(0, 1, 2, 3)).eql(m.row(0));
|
|
try testing.expect(math.Vec4, math.vec4(4, 5, 6, 7)).eql(m.row(1));
|
|
try testing.expect(math.Vec4, math.vec4(8, 9, 10, 11)).eql(m.row(2));
|
|
try testing.expect(math.Vec4, math.vec4(12, 13, 14, 15)).eql(m.row(@TypeOf(m).rows - 1));
|
|
}
|
|
|
|
test "Mat4x4_col" {
|
|
const m = math.Mat4x4.init(
|
|
&math.vec4(0, 1, 2, 3),
|
|
&math.vec4(4, 5, 6, 7),
|
|
&math.vec4(8, 9, 10, 11),
|
|
&math.vec4(12, 13, 14, 15),
|
|
);
|
|
try testing.expect(math.Vec4, math.vec4(0, 4, 8, 12)).eql(m.col(0));
|
|
try testing.expect(math.Vec4, math.vec4(1, 5, 9, 13)).eql(m.col(1));
|
|
try testing.expect(math.Vec4, math.vec4(2, 6, 10, 14)).eql(m.col(2));
|
|
try testing.expect(math.Vec4, math.vec4(3, 7, 11, 15)).eql(m.col(@TypeOf(m).cols - 1));
|
|
}
|
|
|
|
test "Mat3x3_transpose" {
|
|
const m = math.Mat3x3.init(
|
|
&math.vec3(0, 1, 2),
|
|
&math.vec3(3, 4, 5),
|
|
&math.vec3(6, 7, 8),
|
|
);
|
|
try testing.expect(math.Mat3x3, math.Mat3x3.init(
|
|
&math.vec3(0, 3, 6),
|
|
&math.vec3(1, 4, 7),
|
|
&math.vec3(2, 5, 8),
|
|
)).eql(m.transpose());
|
|
}
|
|
|
|
test "Mat4x4_transpose" {
|
|
const m = math.Mat4x4.init(
|
|
&math.vec4(0, 1, 2, 3),
|
|
&math.vec4(4, 5, 6, 7),
|
|
&math.vec4(8, 9, 10, 11),
|
|
&math.vec4(12, 13, 14, 15),
|
|
);
|
|
try testing.expect(math.Mat4x4, math.Mat4x4.init(
|
|
&math.vec4(0, 4, 8, 12),
|
|
&math.vec4(1, 5, 9, 13),
|
|
&math.vec4(2, 6, 10, 14),
|
|
&math.vec4(3, 7, 11, 15),
|
|
)).eql(m.transpose());
|
|
}
|
|
|
|
test "Mat3x3_scale" {
|
|
const m = math.Mat3x3.scale(math.vec2(2, 3));
|
|
try testing.expect(math.Mat3x3, math.Mat3x3.init(
|
|
&math.vec3(2, 0, 0),
|
|
&math.vec3(0, 3, 0),
|
|
&math.vec3(0, 0, 1),
|
|
)).eql(m);
|
|
}
|
|
|
|
test "Mat3x3_scaleScalar" {
|
|
const m = math.Mat3x3.scaleScalar(2);
|
|
try testing.expect(math.Mat3x3, math.Mat3x3.init(
|
|
&math.vec3(2, 0, 0),
|
|
&math.vec3(0, 2, 0),
|
|
&math.vec3(0, 0, 1),
|
|
)).eql(m);
|
|
}
|
|
|
|
test "Mat4x4_scale" {
|
|
const m = math.Mat4x4.scale(math.vec3(2, 3, 4));
|
|
try testing.expect(math.Mat4x4, math.Mat4x4.init(
|
|
&math.vec4(2, 0, 0, 0),
|
|
&math.vec4(0, 3, 0, 0),
|
|
&math.vec4(0, 0, 4, 0),
|
|
&math.vec4(0, 0, 0, 1),
|
|
)).eql(m);
|
|
}
|
|
|
|
test "Mat4x4_scaleScalar" {
|
|
const m = math.Mat4x4.scaleScalar(2);
|
|
try testing.expect(math.Mat4x4, math.Mat4x4.init(
|
|
&math.vec4(2, 0, 0, 0),
|
|
&math.vec4(0, 2, 0, 0),
|
|
&math.vec4(0, 0, 2, 0),
|
|
&math.vec4(0, 0, 0, 1),
|
|
)).eql(m);
|
|
}
|
|
|
|
test "Mat3x3_translate" {
|
|
const m = math.Mat3x3.translate(math.vec2(2, 3));
|
|
try testing.expect(math.Mat3x3, math.Mat3x3.init(
|
|
&math.vec3(1, 0, 2),
|
|
&math.vec3(0, 1, 3),
|
|
&math.vec3(0, 0, 1),
|
|
)).eql(m);
|
|
}
|
|
|
|
test "Mat4x4_translate" {
|
|
const m = math.Mat4x4.translate(math.vec3(2, 3, 4));
|
|
try testing.expect(math.Mat4x4, math.Mat4x4.init(
|
|
&math.vec4(1, 0, 0, 2),
|
|
&math.vec4(0, 1, 0, 3),
|
|
&math.vec4(0, 0, 1, 4),
|
|
&math.vec4(0, 0, 0, 1),
|
|
)).eql(m);
|
|
}
|
|
|
|
test "Mat3x3_translateScalar" {
|
|
const m = math.Mat3x3.translateScalar(2);
|
|
try testing.expect(math.Mat3x3, math.Mat3x3.init(
|
|
&math.vec3(1, 0, 2),
|
|
&math.vec3(0, 1, 2),
|
|
&math.vec3(0, 0, 1),
|
|
)).eql(m);
|
|
}
|
|
|
|
test "Mat4x4_translateScalar" {
|
|
const m = math.Mat4x4.translateScalar(2);
|
|
try testing.expect(math.Mat4x4, math.Mat4x4.init(
|
|
&math.vec4(1, 0, 0, 2),
|
|
&math.vec4(0, 1, 0, 2),
|
|
&math.vec4(0, 0, 1, 2),
|
|
&math.vec4(0, 0, 0, 1),
|
|
)).eql(m);
|
|
}
|
|
|
|
test "Mat3x3_translation" {
|
|
const m = math.Mat3x3.translate(math.vec2(2, 3));
|
|
try testing.expect(math.Vec2, math.vec2(2, 3)).eql(m.translation());
|
|
}
|
|
|
|
test "Mat4x4_translation" {
|
|
const m = math.Mat4x4.translate(math.vec3(2, 3, 4));
|
|
try testing.expect(math.Vec3, math.vec3(2, 3, 4)).eql(m.translation());
|
|
}
|
|
|
|
test "Mat4x4_perspective" {
|
|
const fov_radians = std.math.pi / 2.0; // Field of view in radians
|
|
const aspect_ratio = 16.0 / 9.0; // Aspect ratio
|
|
const near = 0.1; // Near clipping plane
|
|
const far = 100.0; // Far clipping plane
|
|
|
|
const m = math.Mat4x4.perspective(fov_radians, aspect_ratio, near, far);
|
|
|
|
const expected = math.Mat4x4.init(&math.vec4(1.0 / (aspect_ratio * std.math.tan(fov_radians / 2.0)), 0.0, 0.0, 0.0), &math.vec4(0.0, 1.0 / std.math.tan(fov_radians / 2.0), 0.0, 0.0), &math.vec4(0.0, 0.0, -(far + near) / (far - near), -1.0), &math.vec4(0.0, 0.0, -(2.0 * far * near) / (far - near), 0.0));
|
|
|
|
try testing.expect(math.Mat4x4, expected).eql(m);
|
|
}
|
|
|
|
test "Mat3x3_mulVec_vec3_ident" {
|
|
const v = math.Vec3.splat(1);
|
|
const ident = math.Mat3x3.ident;
|
|
const expected = v;
|
|
var m = math.Mat3x3.mulVec(&ident, &v);
|
|
|
|
try testing.expect(math.Vec3, expected).eql(m);
|
|
}
|
|
|
|
test "Mat3x3_mulVec_vec3" {
|
|
const v = math.Vec3.splat(1);
|
|
const mat = math.Mat3x3.init(
|
|
&math.vec3(2, 0, 0),
|
|
&math.vec3(0, 2, 0),
|
|
&math.vec3(0, 0, 3),
|
|
);
|
|
|
|
const m = math.Mat3x3.mulVec(&mat, &v);
|
|
const expected = math.vec3(2, 2, 3);
|
|
try testing.expect(math.Vec3, expected).eql(m);
|
|
}
|
|
|
|
test "Mat4x4_mulVec_vec4" {
|
|
const v = math.vec4(2, 5, 1, 8);
|
|
const mat = math.Mat4x4.init(
|
|
&math.vec4(1, 0, 2, 0),
|
|
&math.vec4(0, 3, 0, 4),
|
|
&math.vec4(0, 0, 5, 0),
|
|
&math.vec4(6, 0, 0, 7),
|
|
);
|
|
|
|
const m = math.Mat4x4.mulVec(&mat, &v);
|
|
const expected = math.vec4(4, 47, 5, 68);
|
|
try testing.expect(math.Vec4, expected).eql(m);
|
|
}
|
|
|
|
test "Mat3x3_mul" {
|
|
const a = math.Mat3x3.init(
|
|
&math.vec3(4, 2, -3),
|
|
&math.vec3(7, 9, -8),
|
|
&math.vec3(-1, 8, -8),
|
|
);
|
|
const b = math.Mat3x3.init(
|
|
&math.vec3(5, -7, -8),
|
|
&math.vec3(6, -3, 2),
|
|
&math.vec3(-3, -4, 4),
|
|
);
|
|
const c = math.Mat3x3.mul(&a, &b);
|
|
|
|
const expected = math.Mat3x3.init(
|
|
&math.vec3(41, -22, -40),
|
|
&math.vec3(113, -44, -70),
|
|
&math.vec3(67, 15, -8),
|
|
);
|
|
try testing.expect(math.Mat3x3, expected).eql(c);
|
|
}
|
|
|
|
test "Mat4x4_mul" {
|
|
const a = math.Mat4x4.init(
|
|
&math.vec4(10, -5, 6, -2),
|
|
&math.vec4(0, -1, 0, 9),
|
|
&math.vec4(-1, 6, -4, 8),
|
|
&math.vec4(9, -8, -6, -10),
|
|
);
|
|
const b = math.Mat4x4.init(
|
|
&math.vec4(7, -7, -3, -8),
|
|
&math.vec4(1, -1, -7, -2),
|
|
&math.vec4(-10, 2, 2, -2),
|
|
&math.vec4(10, -7, 7, 1),
|
|
);
|
|
const c = math.Mat4x4.mul(&a, &b);
|
|
|
|
const expected = math.Mat4x4.init(
|
|
&math.vec4(-15, -39, 3, -84),
|
|
&math.vec4(89, -62, 70, 11),
|
|
&math.vec4(119, -63, 9, 12),
|
|
&math.vec4(15, 3, -53, -54),
|
|
);
|
|
try testing.expect(math.Mat4x4, expected).eql(c);
|
|
}
|