mach/examples/custom-renderer/App.zig
Stephen Gutekanst 133c89638b all: move mach.Timer, core Timer/Frequency to mach.time module
Signed-off-by: Stephen Gutekanst <stephen@hexops.com>
2024-08-25 14:24:09 -07:00

219 lines
8.2 KiB
Zig

const mach = @import("mach");
const math = mach.math;
const Renderer = @import("Renderer.zig");
const vec3 = math.vec3;
const vec2 = math.vec2;
const Vec2 = math.Vec2;
const Vec3 = math.Vec3;
// Global state for our game module.
timer: mach.time.Timer,
player: mach.EntityID,
direction: Vec2 = vec2(0, 0),
spawning: bool = false,
spawn_timer: mach.time.Timer,
// Components our game module defines.
pub const components = .{
// Whether an entity is a "follower" of our player entity or not. The type is void because we
// don't need any information, this is just a tag we assign to an entity with no data.
.follower = .{ .type = void },
};
pub const systems = .{
.start = .{ .handler = start },
.init = .{ .handler = init },
.deinit = .{ .handler = deinit },
.tick = .{ .handler = tick },
};
// Define the globally unique name of our module. You can use any name here, but keep in mind no
// two modules in the program can have the same name.
pub const name = .app;
// The mach.Mod type corresponding to our module struct (this file.) This provides methods for
// working with this module (e.g. sending events, working with its components, etc.)
//
// Note that Mod.state() returns an instance of our module struct.
pub const Mod = mach.Mod(@This());
pub fn deinit(core: *mach.Core.Mod, renderer: *Renderer.Mod) void {
renderer.schedule(.deinit);
core.schedule(.deinit);
}
fn start(
core: *mach.Core.Mod,
renderer: *Renderer.Mod,
app: *Mod,
) !void {
core.schedule(.init);
renderer.schedule(.init);
app.schedule(.init);
}
fn init(
// These are injected dependencies - as long as these modules were registered in the top-level
// of the program we can have these types injected here, letting us work with other modules in
// our program seamlessly and with a type-safe API:
entities: *mach.Entities.Mod,
core: *mach.Core.Mod,
renderer: *Renderer.Mod,
app: *Mod,
) !void {
core.state().on_tick = app.system(.tick);
core.state().on_exit = app.system(.deinit);
// Create our player entity.
const player = try entities.new();
// Give our player entity a .renderer.position and .renderer.scale component. Note that these
// are defined by the Renderer module, so we use `renderer: *Renderer.Mod` to interact with
// them.
//
// Components live in a module's namespace, so e.g. a physics2d module and renderer3d module could
// both define a .position component with a different data type, and both could be added to the
// same entity.
try renderer.set(player, .position, vec3(0, 0, 0));
try renderer.set(player, .scale, 1.0);
// Initialize our game module's state - these are the struct fields defined at the top of this
// file. If this is not done, then app.state() will panic indicating the state was never
// initialized.
app.init(.{
.timer = try mach.time.Timer.start(),
.spawn_timer = try mach.time.Timer.start(),
.player = player,
});
core.schedule(.start);
}
fn tick(
entities: *mach.Entities.Mod,
core: *mach.Core.Mod,
renderer: *Renderer.Mod,
app: *Mod,
) !void {
var iter = core.state().pollEvents();
var direction = app.state().direction;
var spawning = app.state().spawning;
while (iter.next()) |event| {
switch (event) {
.key_press => |ev| {
switch (ev.key) {
.left => direction.v[0] -= 1,
.right => direction.v[0] += 1,
.up => direction.v[1] += 1,
.down => direction.v[1] -= 1,
.space => spawning = true,
else => {},
}
},
.key_release => |ev| {
switch (ev.key) {
.left => direction.v[0] += 1,
.right => direction.v[0] -= 1,
.up => direction.v[1] -= 1,
.down => direction.v[1] += 1,
.space => spawning = false,
else => {},
}
},
.close => core.schedule(.exit), // Send an event telling mach to exit the app
else => {},
}
}
// Keep track of which direction we want the player to move based on input, and whether we want
// to be spawning entities.
//
// Note that app.state() simply returns a pointer to a global singleton of the struct defined
// by this file, so we can access fields defined at the top of this file.
app.state().direction = direction;
app.state().spawning = spawning;
// Get the current player position
var player_pos = renderer.get(app.state().player, .position).?;
// If we want to spawn new entities, then spawn them now. The timer just makes spawning rate
// independent of frame rate.
if (spawning and app.state().spawn_timer.read() > 1.0 / 60.0) {
_ = app.state().spawn_timer.lap(); // Reset the timer
for (0..5) |_| {
// Spawn a new entity at the same position as the player, but smaller in scale.
const new_entity = try entities.new();
try renderer.set(new_entity, .position, player_pos);
try renderer.set(new_entity, .scale, 1.0 / 6.0);
// Tag the entity as one that follows the player
try app.set(new_entity, .follower, {});
}
}
// Multiply by delta_time to ensure that movement is the same speed regardless of the frame rate.
const delta_time = app.state().timer.lap();
// Calculate the player position, by moving in the direction the player wants to go
// by the speed amount.
const speed = 1.0;
player_pos.v[0] += direction.x() * speed * delta_time;
player_pos.v[1] += direction.y() * speed * delta_time;
try renderer.set(app.state().player, .position, player_pos);
// Query all the entities that have the .follower tag indicating they should follow the player.
// TODO(important): better querying API
// Iterate the ID and position of each follower entity
var q = try entities.query(.{
.ids = mach.Entities.Mod.read(.id),
.followers = Mod.read(.follower),
.positions = Renderer.Mod.write(.position),
});
while (q.next()) |v| {
for (v.ids, v.positions) |id, *position| {
// Nested query to find all the other follower entities that we should move away from.
// We will avoid all other follower entities if we're too close to them.
// This is not very efficient, but it works!
const close_dist = 1.0 / 15.0;
var avoidance = Vec3.splat(0);
var avoidance_div: f32 = 1.0;
var q2 = try entities.query(.{
.ids = mach.Entities.Mod.read(.id),
.followers = Mod.read(.follower),
.positions = Renderer.Mod.read(.position),
});
while (q2.next()) |v2| {
for (v2.ids, v2.positions) |other_id, other_position| {
if (id == other_id) continue;
if (position.dist(&other_position) < close_dist) {
avoidance = avoidance.sub(&position.dir(&other_position, 0.0000001));
avoidance_div += 1.0;
}
}
}
// Avoid the player if we're too close to it
var avoid_player_multiplier: f32 = 1.0;
if (position.dist(&player_pos) < close_dist * 6.0) {
avoidance = avoidance.sub(&position.dir(&player_pos, 0.0000001));
avoidance_div += 1.0;
avoid_player_multiplier = 4.0;
}
// Determine our new position, taking into account things we want to avoid
const move_speed = 1.0 * delta_time;
var new_position = position.add(&avoidance.divScalar(avoidance_div).mulScalar(move_speed * avoid_player_multiplier));
// Try to move towards the center of the world if we don't need to avoid something else
new_position = new_position.lerp(&vec3(0, 0, 0), move_speed / avoidance_div);
// Finally, update our entity position.
position.* = new_position;
}
}
renderer.schedule(.render_frame);
}