This adds a helper that can be used people's `build.zig` code, called `@import("mach").addExecutable`,
a direct replacement for `b.addExecutable`.
The benefits of using this method are:
1. Your `build.zig` code does not need to be aware of platform-specifics that may be required to build an executable,
for example setting a Windows manifest to ensure your app is DPI-aware.
2. You do not need to write `main.zig` entrypoint code, which although simple today is expected to become more complex
over time as we add support for more platforms. For example, WASM and other platforms require different entrypoints
and this can account for that without your `build.zig` containing that logic.
Steps to use:
1. Delete your `main.zig` file.
2. Define your `Modules` as a public const in your `App.zig` file, e.g.:
```zig
// The set of Mach modules our application may use.
pub const Modules = mach.Modules(.{
mach.Core,
App,
});
```
3. Update your `build.zig` code to use `@import("mach").addExecutable` like so:
```zig
const std = @import("std");
pub fn build(b: *std.Build) void {
const target = b.standardTargetOptions(.{});
const optimize = b.standardOptimizeOption(.{});
const app_mod = b.createModule(.{
.root_source_file = b.path("src/App.zig"),
.optimize = optimize,
.target = target,
});
// Add Mach to our library and executable
const mach_dep = b.dependency("mach", .{
.target = target,
.optimize = optimize,
});
app_mod.addImport("mach", mach_dep.module("mach"));
// Use the Mach entrypoint to write main for us
const exe = @import("mach").addExecutable(mach_dep.builder, .{
.name = "hello-world",
.app = app_mod,
.target = target,
.optimize = optimize,
});
b.installArtifact(exe);
const run_cmd = b.addRunArtifact(exe);
run_cmd.step.dependOn(b.getInstallStep());
if (b.args) |args| {
run_cmd.addArgs(args);
}
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
const app_unit_tests = b.addTest(.{
.root_module = app_mod,
});
const run_app_unit_tests = b.addRunArtifact(app_unit_tests);
const test_step = b.step("test", "Run unit tests");
test_step.dependOn(&run_app_unit_tests.step);
}
```
Signed-off-by: Emi <emi@hexops.com>
286 lines
9.2 KiB
Zig
286 lines
9.2 KiB
Zig
const std = @import("std");
|
|
const zigimg = @import("zigimg");
|
|
const assets = @import("assets");
|
|
const mach = @import("mach");
|
|
const gpu = mach.gpu;
|
|
const gfx = mach.gfx;
|
|
const math = mach.math;
|
|
|
|
const vec2 = math.vec2;
|
|
const vec3 = math.vec3;
|
|
const Vec2 = math.Vec2;
|
|
const Vec3 = math.Vec3;
|
|
const Mat3x3 = math.Mat3x3;
|
|
const Mat4x4 = math.Mat4x4;
|
|
|
|
const App = @This();
|
|
|
|
// The set of Mach modules our application may use.
|
|
pub const Modules = mach.Modules(.{
|
|
mach.Core,
|
|
mach.gfx.Sprite,
|
|
App,
|
|
});
|
|
|
|
pub const mach_module = .app;
|
|
|
|
pub const mach_systems = .{ .main, .init, .tick, .deinit };
|
|
|
|
pub const main = mach.schedule(.{
|
|
.{ mach.Core, .init },
|
|
.{ App, .init },
|
|
.{ mach.Core, .main },
|
|
});
|
|
|
|
allocator: std.mem.Allocator,
|
|
window: mach.ObjectID,
|
|
timer: mach.time.Timer,
|
|
spawn_timer: mach.time.Timer,
|
|
fps_timer: mach.time.Timer,
|
|
rand: std.Random.DefaultPrng,
|
|
|
|
frame_count: usize = 0,
|
|
sprites: usize = 0,
|
|
time: f32 = 0,
|
|
direction: Vec2 = vec2(0, 0),
|
|
spawning: bool = false,
|
|
player_id: mach.ObjectID = undefined,
|
|
pipeline_id: mach.ObjectID = undefined,
|
|
|
|
pub fn init(
|
|
core: *mach.Core,
|
|
app: *App,
|
|
app_mod: mach.Mod(App),
|
|
) !void {
|
|
core.on_tick = app_mod.id.tick;
|
|
core.on_exit = app_mod.id.deinit;
|
|
|
|
const window = try core.windows.new(.{
|
|
.title = "gfx.Sprite",
|
|
});
|
|
|
|
// TODO(allocator): find a better way to get an allocator here
|
|
const allocator = std.heap.c_allocator;
|
|
|
|
app.* = .{
|
|
.allocator = allocator,
|
|
.window = window,
|
|
.timer = try mach.time.Timer.start(),
|
|
.spawn_timer = try mach.time.Timer.start(),
|
|
.fps_timer = try mach.time.Timer.start(),
|
|
.rand = std.Random.DefaultPrng.init(1337),
|
|
};
|
|
}
|
|
|
|
fn setupPipeline(
|
|
core: *mach.Core,
|
|
app: *App,
|
|
sprite: *gfx.Sprite,
|
|
window_id: mach.ObjectID,
|
|
) !void {
|
|
const window = core.windows.getValue(window_id);
|
|
|
|
// Create a sprite rendering pipeline
|
|
app.pipeline_id = try sprite.pipelines.new(.{
|
|
.window = window_id,
|
|
.render_pass = undefined,
|
|
.texture = try loadTexture(window.device, window.queue, app.allocator),
|
|
});
|
|
|
|
// Create our player sprite
|
|
app.player_id = try sprite.objects.new(.{
|
|
.transform = Mat4x4.translate(vec3(-0.02, 0, 0)),
|
|
.size = vec2(32, 32),
|
|
.uv_transform = Mat3x3.translate(vec2(0, 0)),
|
|
});
|
|
// Attach the sprite to our sprite rendering pipeline.
|
|
try sprite.pipelines.setParent(app.player_id, app.pipeline_id);
|
|
}
|
|
|
|
pub fn tick(
|
|
core: *mach.Core,
|
|
app: *App,
|
|
sprite: *gfx.Sprite,
|
|
sprite_mod: mach.Mod(gfx.Sprite),
|
|
) !void {
|
|
const label = @tagName(mach_module) ++ ".tick";
|
|
|
|
var direction = app.direction;
|
|
var spawning = app.spawning;
|
|
while (core.nextEvent()) |event| {
|
|
switch (event) {
|
|
.key_press => |ev| {
|
|
switch (ev.key) {
|
|
.left => direction.v[0] -= 1,
|
|
.right => direction.v[0] += 1,
|
|
.up => direction.v[1] += 1,
|
|
.down => direction.v[1] -= 1,
|
|
.space => spawning = true,
|
|
else => {},
|
|
}
|
|
},
|
|
.key_release => |ev| {
|
|
switch (ev.key) {
|
|
.left => direction.v[0] += 1,
|
|
.right => direction.v[0] -= 1,
|
|
.up => direction.v[1] -= 1,
|
|
.down => direction.v[1] += 1,
|
|
.space => spawning = false,
|
|
else => {},
|
|
}
|
|
},
|
|
.window_open => |ev| try setupPipeline(core, app, sprite, ev.window_id),
|
|
.close => core.exit(),
|
|
else => {},
|
|
}
|
|
}
|
|
app.direction = direction;
|
|
app.spawning = spawning;
|
|
|
|
var player = sprite.objects.getValue(app.player_id);
|
|
var player_pos = player.transform.translation();
|
|
if (spawning and app.spawn_timer.read() > 1.0 / 60.0) {
|
|
// Spawn new entities
|
|
_ = app.spawn_timer.lap();
|
|
for (0..100) |_| {
|
|
var new_pos = player_pos;
|
|
new_pos.v[0] += app.rand.random().floatNorm(f32) * 25;
|
|
new_pos.v[1] += app.rand.random().floatNorm(f32) * 25;
|
|
|
|
const new_sprite_id = try sprite.objects.new(.{
|
|
.transform = Mat4x4.translate(new_pos).mul(&Mat4x4.scale(Vec3.splat(0.3))),
|
|
.size = vec2(32, 32),
|
|
.uv_transform = Mat3x3.translate(vec2(0, 0)),
|
|
});
|
|
try sprite.pipelines.setParent(new_sprite_id, app.pipeline_id);
|
|
app.sprites += 1;
|
|
}
|
|
}
|
|
|
|
// Multiply by delta_time to ensure that movement is the same speed regardless of the frame rate.
|
|
const delta_time = app.timer.lap();
|
|
|
|
// Rotate all sprites in the pipeline.
|
|
var pipeline_children = try sprite.pipelines.getChildren(app.pipeline_id);
|
|
defer pipeline_children.deinit();
|
|
for (pipeline_children.items) |sprite_id| {
|
|
if (!sprite.objects.is(sprite_id)) continue;
|
|
if (sprite_id == app.player_id) continue; // don't rotate the player
|
|
var s = sprite.objects.getValue(sprite_id);
|
|
const location = s.transform.translation();
|
|
var transform = Mat4x4.ident;
|
|
transform = transform.mul(&Mat4x4.translate(location));
|
|
transform = transform.mul(&Mat4x4.rotateZ(2 * math.pi * app.time));
|
|
transform = transform.mul(&Mat4x4.scaleScalar(@min(math.cos(app.time / 2.0), 0.5)));
|
|
sprite.objects.set(sprite_id, .transform, transform);
|
|
}
|
|
|
|
// Calculate the player position, by moving in the direction the player wants to go
|
|
// by the speed amount.
|
|
const speed = 200.0;
|
|
player_pos.v[0] += direction.x() * speed * delta_time;
|
|
player_pos.v[1] += direction.y() * speed * delta_time;
|
|
sprite.objects.set(app.player_id, .transform, Mat4x4.translate(player_pos));
|
|
|
|
const window = core.windows.getValue(app.window);
|
|
|
|
// Grab the back buffer of the swapchain
|
|
// TODO(Core)
|
|
const back_buffer_view = window.swap_chain.getCurrentTextureView().?;
|
|
defer back_buffer_view.release();
|
|
|
|
// Create a command encoder
|
|
const encoder = window.device.createCommandEncoder(&.{ .label = label });
|
|
defer encoder.release();
|
|
|
|
// Begin render pass
|
|
const sky_blue = gpu.Color{ .r = 0.776, .g = 0.988, .b = 1, .a = 1 };
|
|
const color_attachments = [_]gpu.RenderPassColorAttachment{.{
|
|
.view = back_buffer_view,
|
|
.clear_value = sky_blue,
|
|
.load_op = .clear,
|
|
.store_op = .store,
|
|
}};
|
|
const render_pass = encoder.beginRenderPass(&gpu.RenderPassDescriptor.init(.{
|
|
.label = label,
|
|
.color_attachments = &color_attachments,
|
|
}));
|
|
|
|
// Render sprites
|
|
sprite.pipelines.set(app.pipeline_id, .render_pass, render_pass);
|
|
sprite_mod.call(.tick);
|
|
|
|
// Finish render pass
|
|
render_pass.end();
|
|
var command = encoder.finish(&.{ .label = label });
|
|
window.queue.submit(&[_]*gpu.CommandBuffer{command});
|
|
command.release();
|
|
render_pass.release();
|
|
|
|
app.frame_count += 1;
|
|
app.time += delta_time;
|
|
|
|
// TODO(object): window-title
|
|
// // Every second, update the window title with the FPS
|
|
// if (app.fps_timer.read() >= 1.0) {
|
|
// try core.printTitle(
|
|
// core.main_window,
|
|
// "sprite [ FPS: {d} ] [ Sprites: {d} ]",
|
|
// .{ app.frame_count, app.sprites },
|
|
// );
|
|
// core.schedule(.update);
|
|
// app.fps_timer.reset();
|
|
// app.frame_count = 0;
|
|
// }
|
|
}
|
|
|
|
pub fn deinit(
|
|
app: *App,
|
|
sprite: *gfx.Sprite,
|
|
) void {
|
|
// Cleanup here, if desired.
|
|
sprite.objects.delete(app.player_id);
|
|
}
|
|
|
|
// TODO(sprite): don't require users to copy / write this helper themselves
|
|
fn loadTexture(device: *gpu.Device, queue: *gpu.Queue, allocator: std.mem.Allocator) !*gpu.Texture {
|
|
// Load the image from memory
|
|
var img = try zigimg.Image.fromMemory(allocator, assets.sprites_sheet_png);
|
|
defer img.deinit();
|
|
const img_size = gpu.Extent3D{ .width = @as(u32, @intCast(img.width)), .height = @as(u32, @intCast(img.height)) };
|
|
|
|
// Create a GPU texture
|
|
const label = @tagName(mach_module) ++ ".loadTexture";
|
|
const texture = device.createTexture(&.{
|
|
.label = label,
|
|
.size = img_size,
|
|
.format = .rgba8_unorm,
|
|
.usage = .{
|
|
.texture_binding = true,
|
|
.copy_dst = true,
|
|
},
|
|
});
|
|
const data_layout = gpu.Texture.DataLayout{
|
|
.bytes_per_row = @as(u32, @intCast(img.width * 4)),
|
|
.rows_per_image = @as(u32, @intCast(img.height)),
|
|
};
|
|
switch (img.pixels) {
|
|
.rgba32 => |pixels| queue.writeTexture(&.{ .texture = texture }, &data_layout, &img_size, pixels),
|
|
.rgb24 => |pixels| {
|
|
const data = try rgb24ToRgba32(allocator, pixels);
|
|
defer data.deinit(allocator);
|
|
queue.writeTexture(&.{ .texture = texture }, &data_layout, &img_size, data.rgba32);
|
|
},
|
|
else => @panic("unsupported image color format"),
|
|
}
|
|
return texture;
|
|
}
|
|
|
|
fn rgb24ToRgba32(allocator: std.mem.Allocator, in: []zigimg.color.Rgb24) !zigimg.color.PixelStorage {
|
|
const out = try zigimg.color.PixelStorage.init(allocator, .rgba32, in.len);
|
|
var i: usize = 0;
|
|
while (i < in.len) : (i += 1) {
|
|
out.rgba32[i] = zigimg.color.Rgba32{ .r = in[i].r, .g = in[i].g, .b = in[i].b, .a = 255 };
|
|
}
|
|
return out;
|
|
}
|