302 lines
12 KiB
Zig
302 lines
12 KiB
Zig
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const mach = @import("main.zig");
|
|
const sysaudio = mach.sysaudio;
|
|
|
|
pub const Opus = @import("mach-opus");
|
|
|
|
const Audio = @This();
|
|
|
|
pub const mach_module = .mach_audio;
|
|
|
|
pub const mach_systems = .{ .init, .tick, .deinit };
|
|
|
|
const log = std.log.scoped(mach_module);
|
|
|
|
// The number of milliseconds worth of audio to render ahead of time. The lower this number is, the
|
|
// less latency there is in playing new audio. The higher this number is, the less chance there is
|
|
// of glitchy audio playback.
|
|
//
|
|
// By default, we use three times 1/60th of a second - i.e. 3 frames could drop before audio would
|
|
// stop playing smoothly assuming a 60hz application render rate.
|
|
ms_render_ahead: f32 = 16,
|
|
|
|
buffers: mach.Objects(
|
|
.{},
|
|
struct {
|
|
/// The actual audio samples
|
|
samples: []const f32,
|
|
|
|
/// The number of channels in the samples buffer
|
|
channels: u8,
|
|
|
|
/// Volume multiplier
|
|
volume: f32 = 1.0,
|
|
|
|
/// Whether the buffer should be playing currently
|
|
playing: bool = true,
|
|
|
|
/// The currently playhead of the samples
|
|
index: usize = 0,
|
|
},
|
|
),
|
|
|
|
/// Whether to debug audio sync issues
|
|
debug: bool = false,
|
|
|
|
/// Callback which is ran when buffers change state from playing -> not playing
|
|
on_state_change: ?mach.FunctionID = null,
|
|
|
|
/// Audio player (has global volume controls)
|
|
player: sysaudio.Player,
|
|
|
|
// Internal fields
|
|
allocator: std.mem.Allocator,
|
|
ctx: sysaudio.Context,
|
|
output: SampleBuffer,
|
|
mixing_buffer: ?std.ArrayListUnmanaged(f32) = null,
|
|
shutdown: std.atomic.Value(bool) = .init(false),
|
|
mod: mach.Mod(Audio),
|
|
driver_needs_num_samples: usize = 0,
|
|
|
|
const SampleBuffer = std.fifo.LinearFifo(u8, .Dynamic);
|
|
|
|
pub fn init(audio: *Audio, audio_mod: mach.Mod(Audio)) !void {
|
|
// TODO(allocator): find a better way for modules to get allocators
|
|
const allocator = std.heap.c_allocator;
|
|
|
|
const ctx = try sysaudio.Context.init(null, allocator, .{});
|
|
try ctx.refresh();
|
|
|
|
// TODO(audio): let people handle these errors
|
|
// TODO(audio): enable selecting non-default devices
|
|
const device = ctx.defaultDevice(.playback) orelse return error.NoDeviceFound;
|
|
var player = try ctx.createPlayer(device, writeFn, .{ .user_data = audio, .sample_rate = 48000 });
|
|
log.info("opened audio device: channels={} sample_rate={} format={s}", .{ player.channels().len, player.sampleRate(), @tagName(player.format()) });
|
|
|
|
const debug_str = std.process.getEnvVarOwned(
|
|
allocator,
|
|
"MACH_DEBUG_AUDIO",
|
|
) catch |err| switch (err) {
|
|
error.EnvironmentVariableNotFound => null,
|
|
else => return err,
|
|
};
|
|
const debug = if (debug_str) |s| blk: {
|
|
defer allocator.free(s);
|
|
break :blk std.ascii.eqlIgnoreCase(s, "true");
|
|
} else false;
|
|
|
|
audio.* = .{
|
|
.buffers = audio.buffers,
|
|
.allocator = allocator,
|
|
.ctx = ctx,
|
|
.player = player,
|
|
.output = SampleBuffer.init(allocator),
|
|
.debug = debug,
|
|
.mod = audio_mod,
|
|
};
|
|
|
|
try player.start();
|
|
}
|
|
|
|
pub fn deinit(audio: *Audio) void {
|
|
audio.shutdown.store(true, .release);
|
|
audio.player.deinit();
|
|
audio.ctx.deinit();
|
|
if (audio.mixing_buffer) |*b| b.deinit(audio.allocator);
|
|
}
|
|
|
|
/// Audio.tick is called on the high-priority OS audio thread when the audio driver is waiting for
|
|
/// more audio samples because the audio.output buffer does not currently have enough to satisfy the
|
|
/// driver.
|
|
///
|
|
/// Its goal is to fill the audio.output buffer with enough samples to satisfy the immediate
|
|
/// requirements of the audio driver (audio.driver_needs_num_samples), and prepare some amount of
|
|
/// additional samples ahead of time to satisfy the driver in the future.
|
|
pub fn tick(audio: *Audio, audio_mod: mach.Mod(Audio)) !void {
|
|
// If the other thread called deinit(), return.
|
|
if (audio.shutdown.load(.acquire)) {
|
|
return;
|
|
}
|
|
|
|
const allocator = audio.allocator;
|
|
const player = &audio.player;
|
|
const player_channels: u8 = @intCast(player.channels().len);
|
|
const driver_needs = audio.driver_needs_num_samples;
|
|
|
|
// How many audio samples we will render ahead by
|
|
const samples_per_ms = @as(f32, @floatFromInt(player.sampleRate())) / 1000.0;
|
|
const render_ahead: u32 = @as(u32, @intFromFloat(@trunc(audio.ms_render_ahead * samples_per_ms))) * player_channels;
|
|
|
|
// Our goal is to satisfy the driver's immediate needs, plus prepare render_head number of samples.
|
|
const goal_pre_rendered = driver_needs + render_ahead;
|
|
|
|
const already_prepared = audio.output.readableLength() / player.format().size();
|
|
const render_num_samples = if (already_prepared > goal_pre_rendered) 0 else goal_pre_rendered - already_prepared;
|
|
if (render_num_samples < 0) @panic("invariant: Audio.tick ran when more audio samples are not needed");
|
|
|
|
// Ensure our f32 mixing buffer has enough space for the samples we will render right now.
|
|
// This will allocate to grow but never shrink.
|
|
var mixing_buffer = if (audio.mixing_buffer) |*b| b else blk: {
|
|
const b = try std.ArrayListUnmanaged(f32).initCapacity(allocator, render_num_samples);
|
|
audio.mixing_buffer = b;
|
|
break :blk &audio.mixing_buffer.?;
|
|
};
|
|
try mixing_buffer.resize(allocator, render_num_samples); // grows, but never shrinks
|
|
|
|
// Zero the mixing buffer to silence: if no audio is mixed in below, then we want silence
|
|
// not undefined memory noise.
|
|
@memset(mixing_buffer.items, 0);
|
|
|
|
var did_state_change = false;
|
|
{
|
|
audio.buffers.lock();
|
|
defer audio.buffers.unlock();
|
|
|
|
var buffers = audio.buffers.slice();
|
|
while (buffers.next()) |buf_id| {
|
|
var buffer = audio.buffers.getValue(buf_id);
|
|
if (!buffer.playing) continue;
|
|
defer audio.buffers.setValue(buf_id, buffer);
|
|
|
|
const channels_diff = player_channels - buffer.channels + 1;
|
|
const to_read = (@min(buffer.samples.len - buffer.index, mixing_buffer.items.len) / channels_diff) + @rem(@min(buffer.samples.len - buffer.index, mixing_buffer.items.len), channels_diff);
|
|
if (buffer.channels == 1 and player_channels > 1) {
|
|
// Duplicate samples for mono sounds
|
|
var i: usize = 0;
|
|
for (buffer.samples[buffer.index..][0..to_read]) |sample| {
|
|
mixSamplesDuplicate(mixing_buffer.items[i..][0..player_channels], sample * buffer.volume);
|
|
i += player_channels;
|
|
}
|
|
} else {
|
|
mixSamples(mixing_buffer.items[0..to_read], buffer.samples[buffer.index..][0..to_read], buffer.volume);
|
|
}
|
|
|
|
if (buffer.index + to_read >= buffer.samples.len) {
|
|
// No longer playing, we've read all samples
|
|
did_state_change = true;
|
|
buffer.playing = false;
|
|
buffer.index = 0;
|
|
} else buffer.index = buffer.index + to_read;
|
|
}
|
|
}
|
|
if (did_state_change) if (audio.on_state_change) |f| audio_mod.run(f);
|
|
|
|
// Write our rendered samples to the fifo, expanding its size as needed and converting our f32
|
|
// samples to the format the driver expects.
|
|
const out_buffer_len = render_num_samples * player.format().size();
|
|
const out_buffer = try audio.output.writableWithSize(out_buffer_len); // TODO(audio): handle potential OOM here better
|
|
std.debug.assert(mixing_buffer.items.len == render_num_samples);
|
|
sysaudio.convertTo(
|
|
f32,
|
|
mixing_buffer.items,
|
|
player.format(),
|
|
out_buffer[0..out_buffer_len], // writableWithSize may return a larger slice than needed
|
|
);
|
|
audio.output.update(out_buffer_len);
|
|
}
|
|
|
|
/// Called by the system audio driver when the output buffer needs to be filled. Called on a
|
|
/// dedicated OS thread for high-priority audio. Its goal is to fill the output buffer as quickly
|
|
/// as possible and return, else audio skips will occur.
|
|
fn writeFn(audio_opaque: ?*anyopaque, output: []u8) void {
|
|
const audio: *Audio = @ptrCast(@alignCast(audio_opaque));
|
|
const format_size = audio.player.format().size();
|
|
|
|
// If the other thread called deinit(), write zeros to the buffer (no sound) and return.
|
|
if (audio.shutdown.load(.acquire)) {
|
|
@memset(output, 0);
|
|
return;
|
|
}
|
|
|
|
// Do we have enough audio samples in our audio.output buffer to fill the output buffer?
|
|
//
|
|
// This is the most common case, because audio.output should have much more data prepared
|
|
// ahead of time than what the audio driver needs.
|
|
var read_slice = audio.output.readableSlice(0);
|
|
if (read_slice.len >= output.len) {
|
|
if (read_slice.len > output.len) read_slice = read_slice[0..output.len];
|
|
@memcpy(output[0..read_slice.len], read_slice);
|
|
audio.output.discard(read_slice.len);
|
|
return;
|
|
}
|
|
|
|
// At this point, we don't have enough audio data prepared in our audio.output buffer. so we
|
|
// must prepare it now.
|
|
while (true) {
|
|
// Run the audio tick function, which should fill the audio.output buffer with more audio
|
|
// samples.
|
|
audio.driver_needs_num_samples = @divExact(output.len, format_size);
|
|
audio.mod.call(.tick);
|
|
|
|
// Check if we now have enough data in our audio.output buffer. If we do, then we're done.
|
|
read_slice = audio.output.readableSlice(0);
|
|
if (read_slice.len >= output.len) {
|
|
if (read_slice.len > output.len) read_slice = read_slice[0..output.len];
|
|
@memcpy(output[0..read_slice.len], read_slice);
|
|
audio.output.discard(read_slice.len);
|
|
return;
|
|
}
|
|
|
|
// The audio tick didn't produce enough data, this might indicate some subtle mismatch in
|
|
// the audio tick function not producing a multiple of the audio driver's actual buffer
|
|
// size.
|
|
if (audio.debug) log.debug("resync, found {} samples but need {} (nano timestamp {})", .{
|
|
@divExact(read_slice.len, format_size),
|
|
@divExact(output.len, format_size),
|
|
std.time.nanoTimestamp(),
|
|
});
|
|
|
|
// If the other thread called deinit(), write zeros to the buffer (no sound) and return.
|
|
if (audio.shutdown.load(.acquire)) {
|
|
@memset(output, 0);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(audio): remove this switch, currently ReleaseFast/ReleaseSmall have some weird behavior if
|
|
// we use suggestVectorLength
|
|
const vector_length = switch (builtin.mode) {
|
|
.Debug, .ReleaseSafe => std.simd.suggestVectorLength(f32),
|
|
else => null,
|
|
};
|
|
|
|
inline fn mixSamples(a: []f32, b: []const f32, volume: f32) void {
|
|
std.debug.assert(a.len >= b.len);
|
|
|
|
var i: usize = 0;
|
|
|
|
// use SIMD when available
|
|
if (vector_length) |vec_len| {
|
|
const Vec = @Vector(vec_len, f32);
|
|
const vec_blocks_len = b.len - (b.len % vec_len);
|
|
while (i < vec_blocks_len) : (i += vec_len) {
|
|
const b_vec: Vec = b[i..][0..vec_len].*;
|
|
const a_vec: *Vec = @ptrCast(@alignCast(a[i..][0..vec_len]));
|
|
a_vec.* += b_vec * @as(Vec, @splat(volume));
|
|
}
|
|
}
|
|
|
|
for (a[i..b.len], b[i..]) |*a_sample, b_sample| {
|
|
a_sample.* += b_sample * volume;
|
|
}
|
|
}
|
|
|
|
inline fn mixSamplesDuplicate(a: []f32, b: f32) void {
|
|
var i: usize = 0;
|
|
|
|
// use SIMD when available
|
|
if (vector_length) |vec_len| {
|
|
const Vec = @Vector(vec_len, f32);
|
|
const vec_blocks_len = a.len - (a.len % vec_len);
|
|
while (i < vec_blocks_len) : (i += vec_len) {
|
|
const a_vec: *Vec = @ptrCast(@alignCast(a[i..][0..vec_len]));
|
|
a_vec.* += @as(Vec, @splat(b));
|
|
}
|
|
}
|
|
|
|
for (a[i..]) |*a_sample| {
|
|
a_sample.* += b;
|
|
}
|
|
}
|